Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
3x+1=0
<=> x=0
x= -1/3 (-1 phần 3)
đây chính là hàm số y = ax +b voi a =1; b = -m2 -1
voi y =0 => x = m2 +1 <0 ( vô nghiệm vì m2 +1 luôn >0 voi moi m)
kl: không có gt m để x<0
a, ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)
b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)
Vậy để P=2 <=> x=2
(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1