K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

22 tháng 12 2019

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

11 tháng 8 2017

\(\left|4x\right|-\left|-13,5\right|=\left|-7,5\right|\)

\(\Rightarrow\left|4x\right|-13,5=7,5\)

\(\Rightarrow\left|4x\right|=21\)

\(\Rightarrow\left[{}\begin{matrix}4x=21\\4x=-21\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{21}{4}\\x=\dfrac{-21}{4}\end{matrix}\right.\)

\(\left|x-3,4\right|+\left|2,6-y\right|=0\)

\(\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\forall x\\\left|2,6-y\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left|x-3,4\right|+\left|2,6-y\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-3,4\right|=0\Rightarrow x=3,4\\\left|2,6-y\right|=0\Rightarrow y=2,6\end{matrix}\right.\)

\(A= \left|x-500\right|+ \left|x-300\right|\)

\(A= \left|x-500\right|+\left|300-x\right|\)

Áp dụng bất đẳng thức:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(A\ge\left|x-500+300-x\right|\)

\(A\ge200\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-500\ge0\Rightarrow x\ge500\\300-x\ge0\Rightarrow x\le300\end{matrix}\right.\\\left\{{}\begin{matrix}x-500< 0\Rightarrow x< 500\\300-x< 0\Rightarrow x>300\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow300< x< 500\)

11 tháng 8 2017

B1: \(\left|4x\right|-\left|-13.5\right|=\left|-7,5\right|\)

\(\Leftrightarrow\left|4x\right|-13,5=7,5\)
\(\left|4x\right|=7,5+13,5\)

\(\Rightarrow\left|4x\right|=21\)

\(\Rightarrow x\pm21\)

\(\cdot4x=21\)

\(x=21:4\)

\(x=\dfrac{21}{4}\)

\(\cdot4x=-21\)

\(x=-21:4\)

\(x=\dfrac{-21}{4}\)

\(Vậy\) \(x\)\(\in\)\(\left\{\dfrac{21}{4};\dfrac{-21}{4}\right\}\)

B2:

\(\left|x-3,4\right|+\left|2,6-y\right|=0\)

\(\Rightarrow\)... tự làm nhé bạn

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

2 tháng 9 2017

Bài : 5 

a) Ta có : A = 3 + |4 - x|

Vì : \(\left|4-x\right|\ge0\forall x\)

Nên : A = 3 + |4 - x| \(\ge3\forall x\)

Vậy Amin = 3 khi x = 4

b) Ta có : B = 5|1 - 4x| - 1 

Vì  \(\text{5|1 - 4x|}\ge0\forall x\)

Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)

Vậy Bmin = -1 khi x = 1/4

2 tháng 9 2017

a)\(\left|2x-3\right|=6\)

\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

b)\(2.\left|3x+1\right|=5\)

\(\left|3x+1\right|=2,5\)

\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

c)\(7,5-3\left|5-2x\right|=-4,5\)

\(3\left|5-2x\right|=12\)

\(\left|5-2x\right|=4\)

\(...\)

9 tháng 4 2016

2. để Bmax thì x+2/3 đạt GTNN=> x+2/3=0=>x=-2/3

3. 4x=21

    4x=-21 tự tính

x-1.5=2

x-1.5=-2

x+3/4=1/2

x+3/4=-1/2

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11