K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

a) \(\left(2^{2016}+2^{2017}+2^{2018}\right):\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=\dfrac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}\)

\(=\dfrac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}\)

\(=\dfrac{2^{2016}}{2^{2014}}\)

\(=2^{2016-2014}\)

\(=2^2\)

\(=4\)

b)

\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)

\(243< 343\)

Nên \(243^{100}< 343^{100}\)

Vậy \(3^{500}< 7^{300}\)

13 tháng 12 2017

tthấy cách này dễ hơn :

(22016+22017+22018):(22014+22015+22016)

=22016.(1+2+22):22014.(1+2+22)

=(22016.7)+(22014.7)

=22

=4

1: \(125^3\ge5^x>25^2\)

\(\Leftrightarrow5^4< 5^x\le5^9\)

mà x là số nguyên

nên \(x\in\left\{5;6;7;8;9\right\}\)

2: \(16^3\cdot2\ge2^x>8^3\)

\(\Leftrightarrow2^9< 2^x\le2^{12}\cdot2=2^{13}\)

mà x là số nguyên

nên \(x\in\left\{10;11;12;13\right\}\)

3: \(27^{15}< 3^x< 81^{10}\)

\(\Leftrightarrow3^{45}< x< 3^{40}\)(vô lý)

4: \(27^3\cdot3< 3^x< 243^3\)

\(\Leftrightarrow3^{10}< 3^x< 3^{15}\)

mà x là số nguyên

nên \(x\in\left\{11;12;13;14\right\}\)

2 tháng 11 2017

a) ta có :(2^14:1024).2^x=128

=>(2^14:2^10).2^x=2^7

=>2^4.2^x=2^7

=>2^x=2^7:2^4

=>2^x=2^3

=>x=3

b) ta có: 3^x+3^x+1+3^x+2=117

=>3^x.(1+3+3^2)=117

=>3^x.13=117

=>3^x=9=3^2

=>x=2

c)ta có 2^x+2^x+1+2^x+2+2^x+3=480

=>2^x.(1+2+2^2+2^3)=480

=>2^x.15=480

=>2^x=480:15=32=2^5

=>x=5

d) ta có: 2^3.32>=2^n>16

=>2^3.2^5>=2^>2^4

=>2^8>=2^n>2^4

=>n=8;7;6;5

còn lại tương tự

h)16^n<32^4

=>(2^4)^n<(2^5)^4

=>2^4n<2^20

=>4n<20

=>n= 0;1;2;3;4

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

4 tháng 8 2019

Bài 1

d, \(x^2+2xy+y^2-2x-2y+1\)

\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)

\(\Rightarrow\left(x+y-1\right)^2\)

Bài 2:

a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\)

b,\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

c, \(4x^2-9=0\)

\(\Leftrightarrow4x^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)

d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)

\(\Leftrightarrow7x^2-16x+9=0\)

\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)

\(\Leftrightarrow x=\frac{16\pm2}{14}\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)

4 tháng 8 2019

1.a)\(3x-3y+x^2-2xy+y^2\)

\(=3\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3+x-y\right)\)

d)\(x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y+1\right)^2\)

2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)

\(\Leftrightarrow-5x-9=0\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)

b)\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)

c)\(4x^2-9=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)

d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)

\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)

3.Ta có:

8x^2-26x+m 2x-3 4x-7 -14x+m m+21

Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)

\(\Rightarrow m+21=0\)

\(\Rightarrow m=-21\)

Vậy...!

4 tháng 7 2018

\(a)3^5.3.3^{10}:3^{15}=3^{5+1+10-15}=3\)

\(b)4^8.2^5.8^3=\left(2^2\right)^8.2^5.\left(2^3\right)^3=2^{16}.2^5.2^9=2^{16+5+9}=2^{30}\)

\(c)16^2:4^3=\left(4^2\right)^2:4^3=4^4:4^3=4\)

4 tháng 7 2018

a,x2- 22 = 32

⇔ x2=32+22

⇔ x2=36

⇔ x= \(\pm6\)

vậy x=\(\pm6\)

b,x3+ 5 =4

⇔ x3=4-5

⇔ x3=-1

⇔ x=-1

vậy x=-1

c, x3- 4.x= 0

⇔ x(x2-4)=0

⇔ x(x-2)(x+2)=0

\(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

vậy .....

31 tháng 7 2016

Hỏi đáp Toán

Bài 1:

a) \(5x-15y=5\left(x-3y\right)\)

b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)

c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)

d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)

e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)

g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)

h) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)

Bài 2:

a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)

b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)

\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)

c) \(\dfrac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)

d) Có tới 2 dấu "=".

28 tháng 9 2017

bài 1 dễ mk ko lm nữa nhé

bafi2:

a,x(x+1)(x+2)=0

x=0 ; x=-1 ; x=-2

b,x(3x-2)+5(3x-2)=0

(x+5)(3x-2)=0

x=-5 ; x=2/3

c,

(2/3)2- (5x)2=0

(2/3-5x)(2/3+5x)=0

x=+-2/15

d, X2-2*1/2x+(1/2)2=0

(X-1/2)22=0

X=1/2