K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

15 tháng 4 2018

A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)

ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt    thì x2-8x+22 nhỏ nhất

SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)

GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4

vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4

B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)

Dặt \(\frac{1}{x}\)=t         ta có 

B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3       dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2

                                                                                                                            \(\Leftrightarrow\)\(\frac{1}{x}\)=2

                                                                                                                             \(\Leftrightarrow\)=\(\frac{1}{2}\)

vậy GTNN là -3 tại x=1/2

15 tháng 4 2018

2,a, GTNN      A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1

          do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1

dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6

vậy GTNN của A=-1 tại x=6

B,GTNN          B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1

DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1

dấu =xảy ra khi và chỉ khi 4(x+1)2=0

                                         \(\Leftrightarrow\)x=-1

vạy GTNN của B=-1 tại x=-1

C, GTLN           C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)

DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\)    2-  \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2

dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1

Vậy GTLN của c=2 tại x=1

29 tháng 8 2017

bài 1 dễ òy tự lm mà nâng cao kiến thức ;))

Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự

Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)

\(\Leftrightarrow Ax^2+200Ax+10000A=x\)

\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)

\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)

Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)

\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)

\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)

Dấu "=" xảy ra \(\Leftrightarrow x=100\)

Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)

29 tháng 8 2017

Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((

27 tháng 11 2021
Tao khong hieu
27 tháng 11 2021

a)đkxđ: \(x+1\ne0\Leftrightarrow x\ne-1\)

 \(B=\frac{x^2-x+1}{x^2+2x+1}=\frac{x^2+2x+1-3x}{x^2+2x+1}=1-\frac{3x}{\left(x+1\right)^2}=1-\frac{3\left(x+1\right)-3}{\left(x+1\right)^2}\)

\(B=1-\frac{3}{x+1}+\frac{3}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow B=3a^2-3a+1=3\left(a^2-a+\frac{1}{3}\right)=3\left(a^2-2a.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow B\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}\Leftrightarrow x+1=2\Leftrightarrow x=1\left(nhận\right)\)

Vậy GTNN của B là \(\frac{1}{4}\)khi \(x=1\)

b) đkxđ \(x-1\ne0\Leftrightarrow x\ne1\)\(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2x+3}{x^2-2x+1}=3-\frac{2x-3}{\left(x-1\right)^2}=3-\frac{2\left(x-1\right)-1}{\left(x-1\right)^2}\)

\(=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)

Đặt \(\frac{1}{x-1}=b\)\(\Rightarrow E=b^2-2b+3=b^2-2b+1+2=\left(b-1\right)^2+2\)

Vì \(\left(b-1\right)^2\ge0\Leftrightarrow B\ge2\)

Dấu "=" xảy ra khi \(b-1=0\Leftrightarrow b=1\Leftrightarrow\frac{1}{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(nhận\right)\)

Vậy GTNN của B là 2 khi x = 2

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

22 tháng 3 2020

a)
\(B=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

Đặt \(y=\frac{1}{x}\)

\(\Rightarrow B=1-4y+y^2=y^2-4y+4-3=\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra \(\Leftrightarrow y=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của B là -3 <=> x=1/2

22 tháng 3 2020

\(C=\frac{2x}{x^2+1}=\frac{x^2+1-x^2+2x-1}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)

Dấu bằng xảy ra <=> x=1

\(C=\frac{2x}{x^2+1}=\frac{x^2+2x+1-x^2-1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\ge-1\)

Dấu bằng xảy ra <=> x=-1

Vậy maxC=1 <=>x=1
minC=-1 <=> x=-1

18 tháng 8 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3