Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)
ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt thì x2-8x+22 nhỏ nhất
SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)
GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4
vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4
B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)
Dặt \(\frac{1}{x}\)=t ta có
B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3 dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2
\(\Leftrightarrow\)\(\frac{1}{x}\)=2
\(\Leftrightarrow\)=\(\frac{1}{2}\)
vậy GTNN là -3 tại x=1/2
2,a, GTNN A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1
do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1
dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6
vậy GTNN của A=-1 tại x=6
B,GTNN B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1
DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1
dấu =xảy ra khi và chỉ khi 4(x+1)2=0
\(\Leftrightarrow\)x=-1
vạy GTNN của B=-1 tại x=-1
C, GTLN C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)
DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\) 2- \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2
dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1
Vậy GTLN của c=2 tại x=1
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3