Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
Gọi 4 số tự nhiên đó lần lượt là a; a + 1; a + 2; a + 3
Ta có biểu thức :
\(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(A=\left[a\left(a+3\right)\right]\left[\left(a+1\right)\left(a+2\right)\right]+1\)
\(A=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(x=a^2+3a+1\)ta có :
\(A=\left(x-1\right)\left(x+1\right)+1\)
\(A=x^2-1^2+1\)
\(A=x^2\left(đpcm\right)\)
d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 = 0
=> | ( a-b)^2 = 0 => a=b
| ( a-c)^2 = 0 => a=c
| ( b-c)^2 = 0 => b=c
=>>> a=b=c
Ta có: a² + b² = c² + d² =>a²-c²=d²-b²
=>(a-c)(a+c)=(d-b)(d+b)
Ta lại có: a + b = c + d
=> a- c = d - b
Nếu a = c => b = d thì
a²⁰¹³ + b²⁰¹³ = c²⁰¹³ + d²⁰¹³ (đúng).
Nếu a≠c =>b≠d
=>a-c=d-b ≠ 0
Khi đó biểu thức (1) trở thành:
a+c=b+d (vì a-c, d-b ≠ 0)
mà: a + b = c + d
Cộng hai biểu thức theo vế ta được: 2a+b+c=b+c+2d
=>2a=2d =>a=d =>b=c
Vì a=d và b=c nên biểu thức a²⁰¹³ + b²⁰¹³ = c²⁰¹³ + d²⁰¹³ đúng.
2) \(a^2+b^2=c^2+d^2\)
\(\Leftrightarrow\left(a+b\right)^2-2ab=\left(c+d\right)^2-2cd\)
\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=2\left(ab-cd\right)\)
\(\Leftrightarrow\left(a+b+c+d\right)\left(a+b-c-d\right)=2\left(ab-cd\right)\)
Ta có \(\left(a+b+c+d\right)+\left(a+b-c-d\right)=2\left(a+b\right)\) là số chẵn
\(\Rightarrow\) \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) có cùng tính chẵn lẻ
Mặt khác \(\left(a+b+c+d\right)\left(a+b-c-d\right)=2\left(ab-cd\right)\) chia hết cho 2
Nên \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) ko thể cùng lẻ
\(\Rightarrow\) \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) cùng chẵn
Mà \(a+b+c+d>2\) nên \(a+b+c+d\) là hợp số.