Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi a là số tự nhiên đó, ta có:
a chia 3 dư 1 => ( a + 2 ) chia hết cho 3
a chia 4 dư 2 => ( a + 2 ) chia hết cho 4
a chia 5 dư 3 => ( a + 2 ) chia hết cho 5
a chia 6 dư 4 => ( a + 2 ) chia hết cho 6
nên ( a + 2 ) thuộc BC(3;4;5;6) = B(60) = {0;60;120;180;240;300;360;420;480;540;600;660;...}
=> a thuộc {58;118;178;238;298;358;418;478;538;598;658;...}
mà a chia hết cho 11 và a nhỏ nhất nên a = 418
gọi số cân tìm là a
ta có a chia cho 3 dư 1 suy ra a+2 chia hết cho 3
a chia cho 4 dư 2 suy ra a+2 chia hết cho 4
a chia cho 5 dư 3 suy ra a+2 chia hết cho 5
a chia cho 6 dư 4 suy ra a+2 chia hết cho 6
suy ra (a+2) là BC(3,4,5,6)= 60=B(60)=(0,60,120,180,240,300,360,420,540........0
a thuộc (58,118,178,238,298,358,418,538....
suy ra a=598
a, Gọi số tự nhiên cần tìm là \(x\); \(x\) \(\in\) N*
Theo bài ra ta có: \(\left\{{}\begin{matrix}x-1⋮2;3;4;5;6\\x⋮7\end{matrix}\right.\)
2 = 2; 3 = 3; 4 = 22; 5 = 5; 6 = 2.3 ⇒ BCNN(2;3;4;5;6) = 22.3.5= 60
\(\Rightarrow\) \(x\) - 1 ⋮ 60
⇒ \(x\) = 60k + 1 (k \(\in\)N) Vì \(x\) ⋮ 7
⇒ 60k + 1 ⋮ 7
⇒ 4k + 1 ⋮ 7 ⇒ 4k + 1 \(\in\) {0; 7; 14; 21; 28; 35;...;}
⇒ k \(\in\) { - \(\dfrac{1}{4}\); \(\dfrac{3}{2}\); \(\dfrac{13}{4}\); 5;\(\dfrac{27}{4}\); \(\dfrac{17}{2}\);...}
Vì \(x\) là số tự nhiên nhỏ nhất nên k là số tự nhiên nhỏ nhất vậy k = 5
\(x\) = 60.5 + 1 = 301
Kết luận số tự nhiên nhỏ nhất thỏa mãn yêu cầu đề bài là 301
a/ gọi a là số cần tìm.
Nếu a chia cho 2, 3, 4, 5, 6 đều dư 1, vậy khi a trừ cho 1 sẽ chia hết cho 5 số đó và còn là bội chung của chúng, vậy ta có:
2 = 2; 3 = 3; 4 = 22; 5 = 5; 6 = 2.3.
=> BCNN (2, 3, 4, 5, 6) = 22.3.5 = 60.
Khi 60 + 1 tức là a + 1 sẽ ko chia hết cho 7, ta tiếp tục tìm số đó:
BC (2, 3, 4, 5, 6) + 1 = {121; 181; 241; 301...}
Ta thấy số 301 là số nhỏ nhất chia hết cho 7.
Vậy số cần tìm là 301.
b/ gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 1 - 300 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> 301 chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k + 1 (k ϵ N).
Gọi số cần tìm là:a
=>(a+2) chia hết cho 3;4;5;6
Vậy(a+2) là bội chung của 3;4;5;6
=>(a+2)=60k(k thuộc N)
Vì a chia hết cho 11 nên:
60k chia 11 dư 2
<=>55k+5k chi hết cho 11 dư 2
<=>5k chia 11 dư 2
<=>k chi cho 11 dư 7
=>k=11d+7(với d thuộc N)
=>Số cần tìm là:a=60k-2=60(11d +7)-2=660d+418(với d thuộcN)
k mik nha!
Tình bạn vĩnh cửu Phương Dung
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)