Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1+ 3 + 32 + 33 + .... + 348 + 349
3S = 3 + 32 + 33 + 34 + ...+ 349 + 350
2S = 3 + 32 + 33 + 34 + ....349 + 350 - ( 1 + 3 + 32 + 33 +....... + 348 + 3 49 )
2S = 350 - 1
=> S = ( 350 - 1 ) : 2
S = ( 925 - 1 ) : 2
nhận xét thấy 9 lũy thừa chỉ có 2 chữ số tận cùng là 1 và 9 với lũy thừa chẵn là 1 và lẻ là 9
vậy 925 là lũy thừa lẻ nên có tận cùng là : 9
ta có : 9 - 1 = 8 và 8 : 2 = 4 => tận cùng của S là : 4
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
a) S = 1 + 3 + 32 +...+ 348 + 349
=> 3S = 3 + 32 + 33 +...+ 348 + 349 + 350
=> 3S - S = 350 - 1
=> S = \(\frac{3^{50}-1}{2}\)
Vậy S = \(\frac{3^{50}-1}{2}\)
b) Câu này hơi khó!
A=7+73+75+...+71999
⇒A=(7+73)+(75+77)+...+(71997+71999)
⇒A=(7+343)+74(7+73)+...+71996(7+73)
⇒A=350+74.350+...+71996.350
⇒A=(1+74+...+71996).350⋮35
⇒A⋮35(đpcm)
b2:
a) S=1+3+32+...+349
⇒S=(1+3)+(32+33)+...+(348+349)
⇒S=(1+3)+32(1+3)+...+348(1+3)
⇒S=4+32.4+...+348.4
⇒S=(1+32+...+348).4⋮4
⇒S⋮4(đpcm)
c) S=1+3+32+...+349
⇒3S=3+32+33+...+350
⇒3S−S=(3+32+33+...+350)−(1+3+32+...+349)
⇒2S=350−1
⇒S=350−12(đpcm)
Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3
A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2
= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11
Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11
B,
\(7S=7^2+7^3+.......+7^{50}\)
\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)
\(\Rightarrow6S=7^{50}-7\)
\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)
Vậy 6S+7 là lũy thừa của 7
a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)
S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)
S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)
S = 7 + 72.57 + 75.57 + ... + 747.57
S = 7 + 57.(72 + 75 + ... + 747)
S = 7 + 19.3.(72 + 75 + ... + 747)
S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19
=> đpcm
b) S = 7 + 72 + 73 + ... + 748 + 749
7S = 72 + 73 + 74 + ... + 749 + 750
7S - S = 750 - 7 = 6S
6S + 7 = 750 là lũy thừa của 7
=> đpcm
Đề bài bn chép sai, mk sửa lại rùi đó
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
Bài 1:
\(A=7+7^3+7^5+...+7^{1999}\)
\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)
\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)
\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)
\(\Rightarrow A⋮35\left(đpcm\right)\)
b2:
a) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)
\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)
\(\Rightarrow S⋮4\left(đpcm\right)\)
c) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)
Giúp mình câu b bài 2 luôn được không?