Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(\dfrac{-8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(-\dfrac{8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Quy đồng các phân số sau
a)−8/31;−789/3131
b)11/2^3.3^4.5^2;29/2^2.2^4.5^3
c)1/n và 1/n+1 (n thuộc N)
a) \(-\dfrac{8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
b) \(\dfrac{11}{2^3\cdot3^4\cdot4^5}=\dfrac{11\cdot2^3\cdot5^3}{2^6\cdot3^4\cdot4^5\cdot5^3}=\dfrac{11000}{2^6\cdot3^4\cdot4^5\cdot5^3}\)
\(\dfrac{29}{2^2\cdot2^4\cdot5^3}=\dfrac{29\cdot3^4\cdot4^5}{2^6\cdot3^4\cdot4^5\cdot5^3}=\dfrac{2405376}{2^6\cdot3^4\cdot4^5\cdot5^3}\)
c) \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
a: -8/31=-808/3131
-786/3131=-786/3131
b: \(\dfrac{11}{2^3\cdot3^4\cdot5^2}=\dfrac{11\cdot5}{2^3\cdot3^4\cdot5^3}=\dfrac{55}{2^3\cdot3^4\cdot5^3}\)
\(\dfrac{29}{2^2\cdot3^4\cdot5^3}=\dfrac{29\cdot2}{2^3\cdot3^4\cdot5^3}=\dfrac{58}{2^3\cdot3^4\cdot5^3}\)
c: 7/39=140/780
11/65=132/780
9/52=135/780
1. \(\frac{7}{39}=\frac{140}{780};\frac{11}{65}=\frac{132}{780};\frac{9}{52}=\frac{135}{780}\) và thứ tự tăng dần là : \(\frac{132}{780}< \frac{135}{780}< \frac{140}{780}\)
2. \(\frac{17}{20}=\frac{153}{180};-\frac{19}{30}=-\frac{114}{180};\frac{38}{45}=\frac{152}{180};-\frac{13}{10}=-\frac{130}{180}\) và thứ tự tăng dận là :
\(-\frac{130}{180}< -\frac{114}{180}< \frac{152}{180}< \frac{153}{180}\)
.