K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)

\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)

\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)

\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)

b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)

\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)

\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)

2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)

\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)

\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)

Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.

24 tháng 6 2016

a)a3+2a2-13a+10

Ta thấy a=1;a=2 là nghiệm của đa thức nên:

=(a-2)(a-1)(a+5)

b)(a2+4b2-5)2-16(ab+1)2

=(a2+4b2-5+4ab+4)(a2+4b2-5-4ab-4)

=[(a+2b)2-1][(a-2b)2-9]

=(a+2b+1)(a+2b-1)(a-2b+3)(a-2b-3)

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0
24 tháng 9 2020

a) 4a2b3 - 6a3b2 = 2a2b2( 2b - 3a )

b) ( a - b )2 - ( b - a ) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )

c) ( 8a3 - 27b3 ) - 2a( 4a2 - 9b2 ) = 8a3 - 27b3 - 8a3 + 18ab2 = 18ab2 - 27b3 = 9b2( 2a - 3b )

d) 10x2 + 10xy + 5x + 5y = 10x( x + y ) + 5( x + y ) = ( x + y )( 10x + 5 ) = 5( x + y )( 2x + 1 )

e) 5ay - 3bx + ax - 15by = 5y( a - 3b ) + x( a - 3b ) = ( a - 3b )( 5y + x )

24 tháng 9 2020

a) \(4a^2.b^3-6a^3.b^2=2a^2.b^2\left(2b-3a\right)\)

b) \(\left(a-b\right)^2-\left(b-a\right)=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right).\left(a-b+1\right)\)

c) \(8a^3-27b^3-2a.\left(4a^2-9b^2\right)=8a^3-27b^3-8a^3+18ab^2\)

\(=-27b^3+18ab^2=18ab^2-27b^3=9b^2.\left(2a-3b\right)\)

d) \(10x^2+10xy+5x+5y=5.\left(2x^2+2xy+x+y\right)\)

\(=5.\left[\left(2x^2+2xy\right)+\left(x+y\right)\right]=5.\left[2x\left(x+y\right)+\left(x+y\right)\right]\)

\(=5\left(x+y\right)\left(2y+1\right)\)

e) \(5ay-3bx+ax-15by=\left(5ay-15by\right)-\left(3bx-ax\right)\)

\(=5y\left(a-3b\right)-x\left(3b-a\right)=5y\left(a-3b\right)+x\left(a-3b\right)\)

\(=\left(a-3b\right)\left(x+5y\right)\)

14 tháng 10 2020

a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)

\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)

b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)

\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)

\(=\left(-6a-18\right).\left(8a^2-18\right)\)

\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)

\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)

14 tháng 10 2020

a) Xem lại đề

b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2

= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 )​ + ( 4a2 + 3a ) ]

= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )

= ( -6a - 18 )( 8a2 - 18 )

= -6( a + 3 ).2( 4a2 - 9 )

= -12( a + 3 )( 4a2 - 9 )

= -12( a + 3 )( 2a - 3 )( 2a + 3 )

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2