K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>16; y>16)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người thợ làm được: \(\dfrac{1}{16}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì khi người thứ nhất làm trong 3 giờ, người thứ 2 làm trong 6 giờ thì hoàn thành được 25% công việc nên ta có phương trình: 

\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{1}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thợ thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình

Người thợ thứ hai cần 48 giờ để hoàn thành công việc khi làm một mình

1 tháng 2 2021

Gọi thời gian để người thứ nhất và người thứ hai một mình hoàn thành công việc lần lượt là x (giờ) và y (giờ). (Điều kiện x, y > 16).

⇒ Trong một giờ, người thứ nhất làm được Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc); người thứ hai làm được Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc).

+ Cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc nên ta có phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy ta có hệ phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 , hệ phương trình trở thành:

Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 6 2015

Gọi thời gian người 1, người 2 làm một mình xong công việc lần lượt là x, y ngày (x, y > 0)

Trong một ngày người 1 và người 2 lần lượt làm được và công việc.
suy ra phương trình:


Người 1 làm trong 3 ngày và người 2 làm trong 7,5 ngày lần lượt được và công việc suy ra phương trình:


Giải hệ được x = 18, y = 9. So sánh với điều kiện và kết luận

9 tháng 6 2015

người thứ nhất :18 ngày

người thứ hai :9 ngày phải hông ? kiểm tra giùm nghe

 

6 tháng 2 2017

Gọi thời gian để người thứ nhất và người thứ hai một mình hoàn thành công việc lần lượt là x (giờ) và y (giờ). (Điều kiện x, y > 16).

⇒ Trong một giờ, người thứ nhất làm được 1/x  (công việc); người thứ hai làm được 1/y  (công việc).

+ Cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình  16 1 x + 1 y = 1

+ Người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành 25 % = 1 4  công việc nên ta có phương trình  3 ⋅ 1 x + 6 ⋅ 1 y = 1 4

Vậy ta có hệ phương trình  16 ⋅ 1 x + 16 ⋅ 1 y = 1 3 ⋅ 1 x + 6 ⋅ 1 y = 1 4

Đặt u = 1 x ; v = 1 y  , hệ phương trình trở thành:

Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

2 tháng 2 2021

- Gọi x ( giờ ) là thời gian người thứ nhất hoàn thành xong công việc

- Gọi y ( giờ) là thời gian người thứ 2 hoàn thành xong công việc ( x,y > 0 )

- Trong 1h : người thứ nhất làm được \(\frac{1}{x}\)( công việc )

                    người thứ hai làm được \(\frac{1}{y}\)( công việc )

Ta có PT : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)

- Nếu người thứ nhất lúc đầu chỉ làm 3h và người thứ 2 làm trong 6h thì chỉ được 25% công việc

\(\frac{3}{x}+\frac{6}{x}=\frac{1}{4}\left(2\right)\)

- Từ (1) và (2) , ta có HPT : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}}\)

Đặt \(\frac{1}{x}=u;\frac{1}{y}=v\), ta có :

\(\hept{\begin{cases}u+v=\frac{1}{16}\\3u+6v=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6u+6v=\frac{3}{8}\\3u+6v=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}-3u=-\frac{1}{8}\\3u+6v=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{24}\\\frac{1}{8}+6v=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{4}\\6v=\frac{1}{8}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{24}\\\frac{1}{y}=\frac{1}{48}\end{cases}\Leftrightarrow\hept{\begin{cases}x=24\\y=48\end{cases}}}\)( TM )

Vậy : người thứ nhất làm xong trong 24h

          người thứ 2 làm xong trong 48h

2 tháng 11 2017

Gọi thời gian để người thứ nhất và người thứ hai một mình hoàn thành công việc lần lượt là x (giờ) và y (giờ). (Điều kiện x, y > 16).

⇒ Trong một giờ, người thứ nhất làm được Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc); người thứ hai làm được Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc).

+ Cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc nên ta có phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy ta có hệ phương trình Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 , hệ phương trình trở thành:

Giải bài 33 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.

4 tháng 4 2017

Bài giải:

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được công việc, người thứ hai công việc, cả hai người cùng làm chung thì được công việc.

Ta được + = .

Trong 3 giờ, người thứ nhất làm được công việc, trong 6 giờ người thứ hai làm được công việc, cả hai người làm được 25% công việc hay công việc.

Ta được + =

Ta có hệ phương trình: .

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ.



10 tháng 4 2017

Kết luận Nam nên viết rõ ràng hơn nhé!

Gọi x(giờ) là thời gian người thứ nhất hoàn thành công việc khi làm riêng

Gọi y(giờ) là thời gian người thứ hai hoàn thành công việc khi làm riêng

(Điều kiện: x>6; y>6)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(\dfrac{1}{6}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Vì khi người thứ nhất làm trong 3 giờ và người thứ hai làm trong 7 giờ thì hai người hoàn thành \(\dfrac{2}{3}\) công việc nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{2}\\\dfrac{3}{x}+\dfrac{7}{y}=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{4}{y}=-\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-6\cdot\left(-4\right)}{1}=24\\\dfrac{1}{x}+\dfrac{1}{24}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{6}-\dfrac{1}{24}=\dfrac{1}{8}\\y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 8 giờ để hoàn thành công việc khi làm một mình

Người thứ hai cần 24 giờ để hoàn thành công việc khi làm một mình

27 tháng 5 2019

Đổi : 2h55' = 35/12h
Gọi thời gian đội 1 làm một mình xong công việc là x (x > 0; giờ)
Gọi thời gian đội 2 làm một mình xong công việc là x + 2 (giờ)
Mỗi giờ đội 1 làm được 1/x
Mỗi giờ đội 2 làm được 1/x+2
Vì cả hai đội thì sau 2 giờ 55 phút = 35/12(giờ) xong. 
Trong 1 giờ cả hai đội làm được 12/35 công việc
Theo bài ra ta có phương trình 1/x + 1/(x+2) = 12/35.
<=> 35.(x+2) + 35.x = 12.x.(x+2)
<=> 70x + 70 = 12.x^2 + 24.x 
<=> 12.x^2 - 46x - 70 =0 <=> 6x^2 - 23x - 35 = 0
<=> (6x +7).(x-5) = 0 <=> x = -7/6 (loại) hoặc x = 5 (tm)
=> Thời gian đội 1 làm 1 mình là 5 h
Thời gian đội 2 làm 1 mình: 7h

25 tháng 8 2016

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc  trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, người thứ hai \(\frac{1}{y}\) công việc, cả hai người cùng làm chung thì được \(\frac{1}{16}\) công việc.

Ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\) +  = .

Trong 3 giờ, người thứ nhất làm được \(\frac{3}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\) công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\) công việc.

Ta được \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)

Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}\).

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ

 

13 tháng 2 2019

Gọi thời gian người thứ nhất làm một mình để hoàn thành công việc là x (giờ) (x > 0).

Gọi thời gian người thứ hai làm một mình để hoàn thành công việc là y (giờ) y > 0).

Vì cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình

\(16\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành \(25\%=\dfrac{1}{4}\) công việc nên ta có phương trình: \(3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{x}+3.\dfrac{1}{y}=\dfrac{3}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}=\dfrac{1}{24}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=48\left(TM\right)\\x=24\left(TM\right)\end{matrix}\right.\)

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.

7 tháng 3 2022

Cả 2 người thợ làm cùng nhau mỗi giờ làm được

\(\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{5}{12}\)( Công việc ) 

Cả 2 người thợ làm chung thì hoàn thành công việc sau

\(1:\dfrac{5}{12}=\dfrac{12}{5}=24h\)

Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x,y

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{6}{y}=\dfrac{5}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=24\end{matrix}\right.\)