Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
2. Gọi d là ước chung của ( n+1) và ( n+2 )
Ta cso: ( n+1 ) chia hết cho d và ( n+2 ) chia hết cho d => ( n+2 ) - ( n+1 ) chia hết cho d hay 1 chia hết cho d
=> d=-1 và 1 => tử và mẫu của phân số \(\frac{n+1}{n+2}\) chỉ cso ước chung là 1 và -1 => phân số \(\frac{n+1}{n+2}\) là phân sô tối giản
Nếu thấy 2 bài mình làm đúng thì baasm đúng cho mình nhak
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~
\(\frac{2n^2+1}{3}\in Z\Rightarrow2n^2+1\text{ chia hết cho }3\Rightarrow2n^2\text{ chia 3 dư 2}\)
\(\Rightarrow n^2\text{ chia 3 dư 1}\Rightarrow n\text{ chia 3 dư 1}\)
\(\Rightarrow n\text{ không chia hết cho 3 }\Rightarrow\frac{n}{3}\text{ tối giản}\)
\(n\text{ chia 3 dư 1 }\Rightarrow2n\text{ chia 3 dư 2}\Rightarrow2n+3\text{ chia 3 dư 2}\)
\(\Rightarrow2n+3\text{ không chia hết cho 3}\Rightarrow2n+3\text{ không chia hết cho 6}\)
\(\Rightarrow\frac{2n+3}{6}\text{ tối giản}\)
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!
sorry bạn nha!
1. Gọi d là ƯC(n - 5 ; 3n - 14)
\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)
=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d
=> 3n - 15 - 3n + 14 chia hết cho d
=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(n - 5 ; 3n - 14) = 1
=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )
2. Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)
=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)
\(\frac{a}{5}=8\Rightarrow a=40\)
\(\frac{b}{6}=8\Rightarrow b=48\)
=> \(\frac{a}{b}=\frac{40}{48}\)
Vậy phân số cần tìm là \(\frac{40}{48}\)
3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên
=> \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)