K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

B A C N M 1 2 3 4

Giải:
a) Xét \(\Delta BAM,\Delta NCM\) có:

\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_2}=\widehat{M_4}\) ( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta BAM=\Delta NCM\left(c-g-c\right)\)

\(\Rightarrow CN=AB\) ( cạnh t/ứng )

\(\Rightarrow\widehat{BAM}=\widehat{NCM}\) ( cạnh t/ứng )

\(\widehat{BAM}=90^o\Rightarrow\widehat{NCM}=90^o\) hay \(CN\perp AC\)

b) Xét \(\Delta AMN=\Delta CMB\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_1}=\widehat{M_3}\) ( đối đỉnh )

\(BM=MN\left(gt\right)\)

\(\Rightarrow\Delta AMN=\Delta CMB\left(c-g-c\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{CAN}\) ( cạnh t/ứng )

Mà 2 góc trên nằm ở vị trí so le trong nên AN // BC

Vậy...


 

29 tháng 11 2016

cảm ơn bạn

 

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM

22 tháng 1 2016

a. 2AB = AM + AN 
=> 2AB = AM + AC + CN 
=> 2AB = AM + AB + CN 
=> AB = AM + CN 
=> AM + BM = AM + CN 
=> BM = CN 

b. BC cat MN tai F 
ve~ NE // BC ( E thuoc AB keo dai ) 
suy ra gocABC = gocAEN 
gocANE = gocACB 
ma gocABC = gocACB ( tam giac ABC can tai A ) 
=> hinh thang BCNE la hinh thang can 
=> CN = BE 
ma CN = BM ( cm cau a ) 
=> BM = BE 
BF // NE 
=> BF la duong trung binh tam giac MNE => MF = FN 
c. Xet tam giac KMN co 
KM vuong goc MN tai F 
MF = FN 
=> tam giac KMN can tai K 
=> MK = NK 
lai co KB = KC ( K thuoc phan giac goc BAC ) 
BM = CN ( cm cau a ) 
=> tam giac BKM = tam giac CKN (c.c.c) 
=> gocKCN = gocKBM ( = gocABK ) 

gocABC=gocACB(tam giac ABC can) 
gocKBC=gocKCB(tam giac KBC can) 
=> gocABC + gocKBC = gocACB + gocKCB 
=> gocABK = gocACK 
ma gocABK = gocKCN 
=> gocKCN = gocACK 
ma gocKCN + gocACK = 180* 
=> gocKCN = 90* => KC vuong goc AN

5 tháng 3 2020

Vẽ hình đi bạn

26 tháng 11 2018

!. Xét 2 tam giác AMC và tam giác AMB, ta thấy:

\(\widehat{CAM}=\widehat{BAM}\)(Vì AM là tia phân giác của \(\widehat{CAB}\))

CA=BA (gt)

\(\widehat{ACM}=\widehat{ABM}\)(gt)

Từ các giả thiết trên, suy ra:

\(\Delta AMC=\Delta AMB\)(g-c-g)