K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

Bài 2: a)

Ta có: 2x=3y (=) \(\frac{x}{3}\)=\(\frac{y}{2}\) (=) \(\frac{x}{21}\)=\(\frac{y}{14}\)

5y=7z (=) \(\frac{z}{5}\)=\(\frac{y}{7}\) (=) \(\frac{z}{10}\)=\(\frac{y}{14}\)

Suy ra \(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)

ta có \(\frac{x}{21}\)=\(\frac{3x}{63}\)

\(\frac{y}{14}\)= \(\frac{7y}{98}\)

\(\frac{z}{10}\)=\(\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{63}\)=\(\frac{7y}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=2

=) \(\frac{3x}{63}\)=2 (=) 3x=126 (=) x=42

\(\frac{7y}{98}\)=2 (=) 7y=196 (=) y=28

\(\frac{5z}{50}\)=2 (=) 5z=100 (=) z=20

Vậy x=42 ; y=28 ; z=20

17 tháng 11 2016

Có thể là bạn viết nhầm đề bài 2 đấy (5z thành 5y)

21 tháng 11 2016

1/ \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\\ \frac{2x}{3}-3=\frac{2}{5}.\left(-10\right)\)

=> \(\frac{2x}{3}-3=-4\\ \frac{2x}{3}=-4+3\\ \frac{2x}{3}=1\)

=> 2x = 1.3

2x = 3

=> x = 3:2

x = 1,5

vậy x = 1,5

 

8 tháng 11 2016

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(12x-8y=0\Rightarrow12x=8y\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(6z-12x=0\Rightarrow6z=12x\Rightarrow2z=4x\Rightarrow\frac{z}{4}=\frac{x}{2}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

 

8 tháng 11 2016

Đề đúng đây chứ nhỉ: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{4.\left(3x-2y\right)}{16}=\frac{3.\left(2z-4x\right)}{9}=\frac{2.\left(4y-3z\right)}{4}\)

\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}\)

\(=\frac{0}{29}=0\)

\(\Rightarrow\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}\)\(\Rightarrow\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\z=2x\\\frac{y}{3}=\frac{z}{4}\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

21 tháng 10 2016

1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)

21 tháng 10 2016

Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)

\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy A=\(\frac{1}{2}\)

7 tháng 12 2016

Bài 1:
Giải:

Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)

+) \(\frac{x}{21}=4\Rightarrow x=84\)

+) \(\frac{y}{14}=4\Rightarrow y=56\)

+) \(\frac{z}{15}=4\Rightarrow z=60\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(84;56;60\right)\)

Bài 2:
Giải:

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)

\(\Rightarrowđpcm\)
 

7 tháng 12 2016

BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau

BT2 là cũng vậy r ss

 

10 tháng 8 2016

a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)

Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)

Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)

Từ (1) và (2) =>Đpcm

b)Đặt tương tự ta xét VT:

\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)

Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)

Từ (1) và (2) =>Đpcm

c)Cũng đặt tương tự

Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)

Từ (1) và (2) =>Đpcm

d)Đặt cũng như vậy 

Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)

Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)

Từ (1) và (2) =>Đpcm

 

10 tháng 8 2016

a) \(\frac{a-b}{b}=\frac{c-d}{d}\)

Xét d. ( a - b ) = a . d - b . d

      b. ( c - d ) = b . c - b . d

Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c

hay d. ( a - b ) = b. ( c - d )

=> \(\frac{a-b}{b}=\frac{c-d}{d}\)

Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)

31 tháng 7 2016

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k\)

\(y=3k\)

\(z=5k\)

Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:

\(2k.3k.5k=810\)

\(30k^3=810\)

\(k^3=27\)

\(k^3=3^3\)

\(\Rightarrow k=3\)

\(\Rightarrow x=2k=2.3=6\)

\(y=3k=3.3=9\)

\(z=5k=5.3=15\)

Vậy \(x=6;y=9;z=15\)

31 tháng 7 2016

Hỏi đáp Toán

10 tháng 8 2016

b) Theo đề bài, ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x+y+z=50

\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)

  • \(\frac{x}{4}=2.4=8\)
  • \(\frac{y}{6}=2.6=12\)
  • \(\frac{z}{15}=2.15=30\)

Vậy x=8,y=12,z=30.

e) Theo đề bài, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (vì x+y+z khác 0). Do đó x+y+z=0,5

Thay kết quả này vào đề bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{\left(-2,5\right)-z}{z}=2\)

 Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{\left(-5\right)}{6}\)

hihi ^...^ vui ^_^

11 tháng 8 2016

mà bạn chắc đúng k vậy