Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m = 3
Ta có: \(x^4-2.3.x^2+3^2-1=0\)
<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)
<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)
b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)
(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0
Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)
+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm
+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại
Vậy m = 1
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)
\(\to\) Pt có nghiệm với mọi m
Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)
\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)
\(\to 4m^2-4m+6=6\)
\(\leftrightarrow 4m(m-1)=0\)
\(\leftrightarrow m=0\quad or\quad m-1=0\)
\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)
b/ Pt có 2 nghiệm cùng dấu
\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)
\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)
Vì pt có 2 nghiệm với mọi m
\(\to m>\dfrac{3}{2}\)
Vậy \(m>\dfrac{3}{2}\)
\(a,m=5\Leftrightarrow x^2+10x+25-3x+6=0\\ \Leftrightarrow x^2+7x+31=0\\ \Delta=49-4\cdot31< 0\\ \Leftrightarrow x\in\varnothing\)
\(b,PT\Leftrightarrow x^2+x\left(2m-3\right)+m^2+6=0\)
PT có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}1\ne0\\\Delta=\left(2m-3\right)^2-4\left(m^2+6\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-12m+9-4m^2-24\ge0\\ \Leftrightarrow-12m-15\ge0\\ \Leftrightarrow m\le-\dfrac{5}{4}\)