Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ làm bài 1thooi,bài 2 rắc rối quá
Vì a+b chia hết cho 7=>a và b chia hết cho 7
a)vì a chia hết cho 7
b chia hết cho 7=>b8 chia hết cho 7
=> a+8b chia hết cho 7
b) tương tự
c)càng tương tự
Bài 1 thì dễ rồi,
a, a + 8b = a + b + 7b chia hết cho 7
b, 3a - 11b = 3(a + b) - 17b chia hết cho 7
c, 5a - 2b - 2009 = 5(a + b) -7b -2009 chia hết cho 7
Bài 2, Hơi khó, để tìm đã
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
1 ) a + 5b chia hết cho 7
=> 10 ( a + 5b ) chia hết cho 7
=> 10a + 50b chia hết cho 7
( 10a + b ) + 49b chia hết cho 7
Mà : 49b chia hết cho 7
=> 10a + b chia hết cho 7
Ta có: 5a+3b và 13a+8b chia hết cho 2015
=>2(13a+8b)-5(5a+3b) chia hết cho 2015
=>(26a+16b)-(25a+15b) chia hết cho 2015
=>a+b chia hết cho 2015
=>(5a+3b)-3(a+b) chia hết cho 2015
=>(5a+3b)-(3a+3b) chia hết cho 2015
=>2a chia hết cho 2015
Mà(2;2015)=1
=>a chia hết cho 2015
=>(a+b)-a chia hết cho 2015
=>b chia hết cho 2015
Vậy nếu 5a+3b và 13a+8b cùng chia hết cho 2015 thì a và b chia hết cho 2015(đpcm)
do a+b chia hết cho 7 =>a chia hết 7,b chia hết 7=> a+8b chia hết cho 7
tương tự ở câu b
c thì chứng minh thêm 2009 chia hết cho 7 là được