K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{37.41}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{41}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{41}\right)\)

\(=\frac{1}{4}.\frac{36}{205}=\frac{9}{205}\)

15 tháng 4 2019

\(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{37.41}\)

\(=\frac{1}{4}\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{37.41}\right)\)

\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{41}\right)\)

\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{41}\right)\)

\(=\frac{1}{4}.\frac{36}{205}=\frac{9}{205}\)

11 tháng 4 2017

\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)

=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)

=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)

=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)

11 tháng 4 2017

\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)

\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)

\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)

\(S\times4=\frac{1}{5}-\frac{1}{25}\)

\(S\times4=\frac{4}{25}\)

\(S=\frac{1}{25}\)

16 tháng 7 2016

                      Ta có : 

                \(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\)\(=1\)

                \(x+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=1\)

               \(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=1\)

               \(x+\left(\frac{1}{5}-\frac{1}{45}\right)=1\)

             \(x+\frac{8}{45}=1\)

             \(x=1-\frac{8}{45}=\frac{37}{45}\)

           Ủng hộ mk nha !!! ^_^

24 tháng 8 2017

\(S1=\dfrac{5}{10.11}+\dfrac{5}{11.12}+.............+\dfrac{5}{14.15}\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+...............+\dfrac{1}{14.15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+.............+\dfrac{1}{14}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5.\dfrac{1}{30}=\dfrac{1}{6}\)

\(S2=\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+........+\dfrac{1}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{5.9}+\dfrac{4}{9.13}+..............+\dfrac{4}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+............+\dfrac{1}{21}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{25}\)

\(\Leftrightarrow S_2=\dfrac{16}{25}\)

20 tháng 2 2023

Tính chất của phân số bạn cần biết như sau:

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Gọi biểu thức trên là A ,ta có:

\(A=\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+\dfrac{1}{13\cdot17}+\dfrac{1}{17\cdot21}+\dfrac{1}{21\cdot25}\)

\(4A=\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+\dfrac{4}{13\cdot17}+\dfrac{4}{17\cdot21}+\dfrac{4}{21\cdot25}\)

\(4A=\dfrac{9-5}{5\cdot9}+\dfrac{13-9}{9-13}+\dfrac{17-13}{13\cdot17}+\dfrac{21-17}{17\cdot21}+\dfrac{25-21}{21\cdot25}\)

Áp dụng tính chất phân số đã nêu ở trên, ta được:

\(4A=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\)

\(4A=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{5}{25}-\dfrac{1}{25}=\dfrac{4}{25}\)

\(A=4A:4=\dfrac{4}{25}:4=\dfrac{16}{25}\)

Vậy \(A=\dfrac{16}{25}\)

10 tháng 5 2017

\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)

\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(=2100\left(1-\frac{1}{25}\right)\)

\(=2100\cdot\frac{24}{25}\)

\(=2016\)

10 tháng 5 2017

\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\frac{24}{25}\)

\(A=2016\)

25 tháng 2 2023

\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)

25 tháng 2 2023

`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`

`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`

`= 1/5 - 1/25`

`= 4/25`

 

17 tháng 9 2021

\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{5}-\frac{1}{16}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2.\frac{3}{16}]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}=1\)

\(\Rightarrow x=2008\)

17 tháng 9 2021

\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}=\frac{21}{45}\)

\(\Rightarrow x=15\)

4 tháng 8 2020

Ta có \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)(đk : \(x\ne0\))

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

=> \(\frac{7}{x}=\frac{7}{15}\)

=> x = 15 (tm)

b) \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

=> \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)

=> \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

=> \(\frac{1}{3}-\frac{1}{n+3}=\frac{10}{31}\)

=> \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

=> 2x = 90

=> x = 45