Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16\cdot4^{x+1}=64\)
\(\Leftrightarrow4^{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Leftrightarrow x=0\)
Ta có: 16 x \(4^{x+1}\)=64
Nên \(4^{x+1}\) =64 : 16 = 4=4\(4^1\)
Suy ra x+1 =1 =>x = 0
hc tot nha
b)\(\left(x-8\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}\)
c) \(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=9x+200\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+10\right)=9x+200\) (10 số hạng x)
\(\Leftrightarrow10x+55=9x+200\Leftrightarrow x+55=200\)
\(\Leftrightarrow x=145\)
6\(^2\)+ 64 : ( x - 1 ) = 52
36 + 64 : ( x - 1 ) =52
64 ; ( x - 1 ) =64 : 52
x - 1 = \(\frac{16}{13}\)
x = \(\frac{16}{13}\)+1
x = \(\frac{29}{13}\)
HT
bài này không giải được đâu vì những số này đổi ra máy tính tính còn không được
Có : 2A = 23 + 24 + 25 + .... + 22019
=> 2A - A = 22019 - 22
=> A = 22019 - 4
=> A + 4 = 22019 ko phải là số chính phương
Vậy ...........
Tham khảo nak
Có : \(A=2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{2019}\)
\(\Rightarrow2A-A=2^3+...+2^{2019}-2^2-2^3-...-2^{2018}\)
\(\Rightarrow A=2^{2019}-2^2\)
\(\Rightarrow A=2^{2019}-4\)
\(\Rightarrow A+4=2^{2019}\)ko phải là scp
Vậy ..............
\(\frac{17}{2}-\left|2x-\frac{5}{2}\right|=-\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{17}{2}-\frac{-7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{51}{6}+\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{29}{3}\)
\(2x-\frac{5}{2}=\frac{29}{3}\)hoặc \(2x-\frac{5}{2}=\frac{-29}{3}\)
Trường hợp 1:
\(2x-\frac{5}{2}=\frac{29}{3}\)
\(2x=\frac{29}{3}+\frac{5}{2}\)
\(2x=\frac{73}{6}\)
\(x=\frac{73}{6}:2\)
\(x=\frac{73}{12}\)
Trường hợp 2:
\(2x-\frac{5}{2}=\frac{-29}{3}\)
\(2x=\frac{-29}{3}+\frac{5}{2}\)
\(2x=\frac{-43}{6}\)
\(x=\frac{-43}{6}:2\)
\(x=\frac{-43}{12}\)
Vậy \(x=\frac{73}{12}\)hoặc \(x=\frac{-43}{12}\)
\(150-5\left(x-2\right)^2=25\)
\(5\left(x-2\right)^2=150-25=125\)
\(\left(x-2\right)^2=125:5=25\)
\(\Rightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)