Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(-4x2xy^2+3x^2.\frac{1}{3}y+\left(-5\right)xy.\frac{1}{5}xy=-8x^2y^2+x^2y+\left(-x^2y^2\right)=-9x^2y^2+x^2y\)
B) \(\frac{4}{3}x^4y^7-3x^4y^7=\frac{-5}{3}x^4y^7\)
C) \(\frac{2}{3}x^3y^4+3x^3y^4=3\frac{2}{3}x^3y^4\)
CHÚC BN HỌC TỐT!!!
`a,x^3 - 3x^2 + 1 - 3x`
`=x^3 + 1 - 3x^2 - 3x`
`=(x^3 + 1) - 3x(x+1)`
`=(x+1)(x^2 - x + 1) - 3x(x+1)`
`=(x+1)(x^2 - x + 1 - 3x)`
`=(x+1)(x^2 - 4x + 1)`
`b,x^2 + 4x - 2xy - 4y + y^2`
`=(x^2 -2xy + y^2) + (4x-4y)`
`=(x-y)^2 + 4(x-y)`
`=(x-y)(x-y+4)`
`c,3x^2 -6xy + 3y^2 - 12z^2`
`=3(x^2 -2xy +y^2 - 4z^2)`
`=3[(x-y)^2 - (2z)^2]`
`=3(x-y-2z)(x-y+2z)`
a: =x^3+1-3x^2-3x
=(x+1)(x^2-x+1)-3x(x+1)
=(x+1)(x^2-x+1-3x)
=(x+1)(x^2-4x+1)
b: =x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
c: =3(x^2-2xy+y^2-4z^2)
=3[(x-y)^2-4z^2]
=3(x-y-2z)(x-y+2z)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
1. \(\dfrac{x}{7}=\dfrac{y}{4};x-y=30\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(=>\dfrac{x}{7}=10=>x=10.7=70\)
=> \(\dfrac{y}{4}=10=>y=10.4=40\)
Vậy x=70;y=40
2. Tương tự
3.\(2x=3y;x+y=10\)
Ta có: \(2x=3y=>\dfrac{y}{2}=\dfrac{x}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{2}=\dfrac{x}{3}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(=>\dfrac{y}{2}=2=>y=2.2=4\)
=> \(\dfrac{x}{3}=2=>x=2.3=6\)
Vậy y=4;x=6
4. 5. Tương tự
6. \(\dfrac{x}{5}=\dfrac{y}{2};3x-2y=44\)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{2y}{4}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
=> \(\dfrac{x}{5}=4=>x=4.5=20\)
=> \(\dfrac{y}{2}=4=>y=4.2=8\)
Vậy x=20;y=8
7. Tương tự
1, \(\dfrac{x}{7}=\dfrac{y}{4}\) và \(x-y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(\Rightarrow\dfrac{x}{7}=10\Rightarrow x=70\)
\(\Rightarrow\dfrac{y}{4}=10\Rightarrow y=40\)
2, \(\dfrac{x}{4}=\dfrac{y}{-7}\) và \(x-y=30\)
Làm tương tự câu 1.
3, \(2x=3y\) và \(x+y=10\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{2}=10\Rightarrow y=20\)
4, \(4x=3y\) và \(x-y=11\)
\(4x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{11}{-1}=-11\)
\(\Rightarrow\dfrac{x}{3}=-11\Rightarrow x=-33\)
\(\Rightarrow\dfrac{y}{4}=-11\Rightarrow y=-44\)
5, \(3x=5y\) và \(x+y=40\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\dfrac{x}{5}=5\Rightarrow x=25\)
\(\Rightarrow\dfrac{y}{3}=5\Rightarrow y=15\)
- Mệt @@ lần sau đăng từng câu một thôi bn nhé!
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
\(=-\dfrac{1}{6}x^7y^3-\dfrac{1}{3}x^7y^3=\dfrac{-1}{2}x^7y^3\)
\(=-\dfrac{2}{3}x^7y^3-\dfrac{1}{3}x^7y^3=-x^7y^3\)