Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
a.) \\(\\left(a+b+c\\right)^3-a^3-b^3-c^3\\)
\\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc-a^3-b^3-c^3\\)\\(=3\\left(3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc\\right)\\)
\\(=3\\left(abc+a^2b+a^2c+ac^2+b^2c+ab^2+abc+bc^2\\right)\\)
\\(=3\\left[ab\\left(a+c\\right)+ac\\left(a+c\\right)+b^2\\left(a+c\\right)+bc\\left(a+c\\right)\\right]\\)
\\(=3\\left(a+c\\right)\\left(ab+ac+bc+b^2\\right)\\)
\\(=3\\left(a+c\\right)\\left[a\\left(b+c\\right)+b\\left(b+c\\right)\\right]\\)
\\(=3\\left(a+c\\right)\\left(a+b\\right)\\left(b+c\\right)\\)
b) 4a2b2-(a2 +b2-c2)2
=(2ab+a2+b2-c2)(2ab-a2-b2+c2)
=[(a+b)2-c2][c2-(a-b)2]
=(a+b+c)(a+b-c)(c+a-b)(c-a+b)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc-a^3-b^3-c^3\)
\(=3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\)
\(=3\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\right)\)
\(=3\left(ab\left(a+b\right)+b^2c+abc+bc^2+c^2a+ca^2+abc\right)\)
\(=3\left(ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\right)\)
\(=3\left(a+b\right)\left(ab+bc+c^2+ac\right)\)
\(=3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
a, Theo bài ra ta có:
\(=x^3-x-2x+2\)
\(=x\left(x^2-1\right)-2\left(x-1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-2\right)\)
b, theo bài ra ta có:
\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)
\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x-3\right)\)
c,Theo bài ra ta có:
\(=x^3+5x^2+3x^2+15x+2x+10\)
\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+3x+2\right)\)
\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)
CHÚC BẠN HỌC TỐT...........
a) \(x^3-3x+2\)
= \(x^3-x^2+x^2-x-2x+2\)
= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x-2\right)\)
= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)
= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)
= \(\left(x-1\right)^2\left(x+2\right)\)
b) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)\)
= \(\left(x+1\right)\left(x-3\right)^2\)
c) \(x^3+8x^2+17x+10\)
= \(x^3+x^2+7x^2+7x+10x+10\)
= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+7x+10\right)\)
= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)
= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
d) \(x^3-3x^2+6x+4\)
Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:
\(x^3+3x^2+6x+4\)
= \(x^3+x^2+2x^2+2x+4x+4\)
= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+2x+4\right)\)
Học tốt nhé :))
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
a, \(A=5x-x^2=-x^2+5x=-x^2+2x\cdot2,5-\dfrac{25}{4}+\dfrac{25}{4}\)
\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)
Có: \(-\left(x-2,5\right)^2\le0\forall x\)
=> \(-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
''='' xảy ra khi \(x-2,5=0\Rightarrow x=2,5\)
Vậy \(A_{MAX}=\dfrac{25}{4}\Leftrightarrow x=2,5\)
b, \(B=x-x^2=x^2-x=x^2-2\cdot x\cdot\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Lập luận như câu a
c, \(C=4x-x^2+3=-x^2+2\cdot x\cdot2-4+7\)
\(=-\left(x-2\right)^2+7\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
=> \(-\left(x-2\right)^2+7\le7\)
Dấu ''='' xảy ra khi và chỉ khi x = 2
Vậy \(C_{MAX}=7\Leftrightarrow x=2\)
d, \(D=-x^2+6x-11=-x^2+2\cdot x\cdot3-9-2\)
\(=-\left(x-3\right)^2-2\)
Vì \(-\left(x-3\right)^2\le0\forall x\)
=> \(-\left(x-3\right)^2-2\le-2\)
Dấu ''='' xảy ra khi và chỉ khi x - 3 = 0 => x = 3
Vậy \(D_{MAX}=-2\Leftrightarrow x=3\)
e, \(E=5-8x-x^2=-x^2-8x+5=-x^2-2\cdot x\cdot4-16+21\)
\(=-\left(x+4\right)^2+21\)
Lập luận như trên
f, \(F=4x-x^2+1=-x^2+4x+1=-x^2+2\cdot x\cdot2-4+5\)
\(=-\left(x-2\right)^2+5\)
Tượng tự mấy ý trc
\(126y^3+\left(x-5y\right)x^2+25y^2+5xy\)
\(=120y^3+xx^2-5x^2y+25y^2+5xy\)
\(=120y^3+x^3-5x^2y+25y^2+5xy\)
Chúc bạn học tốt!
cảm ơn bạn nhiều nha