Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(|x+7|+|2y-12|=0\)
Vì \(\hept{\begin{cases}|x+7|\ge0;\forall x,y\\|2y-12|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+7|+|2y-12|\ge0;\forall x,y\)
Do đó \(|x+7|+|2y-12|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+7|=0\\|2y-12|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7\\y=6\end{cases}}\)
Vậy ...
các phần sau tương tự
a) Ta có :
\(\left|x+7\right|\ge0\)
\(\left|2y-12\right|\ge0\)
Để |x+7| + | 2y - 12| = 0
=> x +7 = 0 và 2y - 12= 0
x = 7 2y = 12
y = 12 : 2
y = 6
Vậy x = 7 ; y = 6
Trả lời :
Mk giúp bn câu a ) thôi mà sai thì thôi nhé :)))
a, \(\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow x=0;y=0\) \(\Rightarrow\left|x\right|+\left|y\right|=0\)
Vậy x = 0 ; y = 0
_Học tốt
câu a,b,c dạng tương tự nhau nha nên mình làm câu a
a)\(\left|x\right|+\left|y\right|=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left|x\right|\ge0;\forall x,y\\\left|y\right|\ge0;\forall x,y\end{cases}\Rightarrow}\left|x\right|+\left|y\right|\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(0;0\right)\)
d) \(\left|x^2+1\right|=12\left(1\right)\)
Ta thấy \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x^2+1=12\)
\(\Leftrightarrow x^2=11\)
\(\Leftrightarrow x=\pm\sqrt{11}\)
Vậy \(x=\pm\sqrt{11}\)
( x+1 )(y-2)=0
x+1=0 hoặc y-2=0
x=(-1) hoặc y=2
(x-5)(y-7)=1
x-5=1 và y-7=1
x=6 và y=8
đợi mình 1 tí mình làm tiếp
a) \(\left(x-7\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)
Vậy: x∈{7;-12}
b) \(\left(3x-15\right)\left(6-2x\right)=0\)
⇔\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)
hay \(6\left(x-5\right)\left(3-x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy: x∈{3;5}
c) \(\left(3x+9\right)\left(4y-8\right)=0\)
⇔\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)
hay \(12\left(x+3\right)\left(y-2\right)=0\)
Vì 12≠0
nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
Vậy: x=-3 và y=2
d) \(\left(2y-16\right)\left(8x-24\right)=0\)
⇔\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)
hay 16(y-8)(x-3)=0
Vì 16≠0
nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)
Vậy: y=8 và x=3
e) \(\left(22-11y\right)\left(9x-18\right)=0\)
⇔\(11\left(2-y\right)9\left(x-2\right)=0\)
hay 99(2-y)(x-2)=0
Vì 99≠0
nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)
Vậy: x=2 và y=2
g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)
⇔7(y+2)*9(x-2)=0
hay 63(y+2)(x-2)=0
Vì 63≠0
nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
Vậy: y=-2 và x=2
h) xy=3
⇒x,y∈Ư(3)
⇒x,y∈{1;-1;3;-3}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}
i) x*y=-5
⇔x,y∈Ư(-5)
⇔x,y∈{1;-1;5;-5}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}
k) \(\left(x+4\right)\left(y-5\right)=-3\)
⇔x+4; y-5∈Ư(-3)
⇔x+4; y-5∈{1;3;-3;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)
Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}
m) (x-9)(y-5)=-1
⇔x-9; y-5∈Ư(-1)
⇔x-9; y-5∈{1;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
Vậy: x∈{10;8} và y∈{4;6}
n) x+3⋮x+4
⇔x+4-1⋮x+4
⇔-1⋮x+4
hay x+4∈Ư(-1)
⇔x+4∈{1;-1}
⇔x∈{-3;-5}
Vậy: x∈{-3;-5}
p)(x-5)⋮x+2
⇔x+2-7⋮x+2
hay -7⋮x+2
⇔x+2∈Ư(-7)
⇔x+2∈{1;-1;7;-7}
hay x∈{-1;-3;5;-9}
Vậy: x∈{-1;-3;5;-9}
a)9.x + 1=73
9x=73-1
9x=72
x=72:9
x=8
b)2.x - 5 = -17 - 12
2x-5=-29
2x=-29+5
2x=-24
x=-24:2
x=-12
c)10 - x - 5 = - 5 - 7 -11
10-x-5=-12-11
10-x-5=-23
10-x=-23+5
10-x=18
x=10-18
x=-8
d)(-9) . x + 3 = (-2) . (-7) +16
-9x+3=14+16
-9x+3=30
-9x=30-3
-9x=27
x=27:(-9)
x=-3
(-12) . x - 34 =2
-12x=2+34
-12x=36
x=36:(-12)
x=-3
(-11).x + 9 =130
-11x=130-9
-11x=121
x=121:(-11)
x=11
(-5) .x + 5 = (-15) .(-4) -12
-5x+5=60-12
-5x+5=48
-5x=48-5
-5x=43
x=43:(-5)
x=-8,6
IxI -3=0
|x|=3
=>x=+3
(7 - IxI).(2.x - 4) =0
*7-|x|=0 * 2x-4=0
|x|=7 2x=4
=>x=+7 x=4:2
x=2
280-(x-140):35 =270
(x-140):35=280-270
(x-140):35=10
x-140=10.35
x-140=350
x=350+140
x=490
(1900 - 2.x ) : 35- 32 =16
1900-2x=(16+32).35
1900-2x=1680
2x=1900-1680
2x=220
x=220:2
x=110
720 :[41-(2x -5 )] =23 .5
720:[41-(2x-5)]=40
41-(2x-5)=720:40
41-(2x-5)=18
2x-5=41-18
2x-5=23
2x=23+5
2x=28
x=28:2
x=14
(x - 5).(x2 - 4 ) =0
* x-5=0 * x2-4=0
x=0+5 x2=4
x=5 x2=22
=> x=+2