K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

bằng 2 chả lẽ lại đố mẹo

5 tháng 3 2019

= 2

Hello bạn

Mình kết bạn rồi nhé

9 tháng 3 2019

em ạ^^

9 tháng 3 2019

lớp 8 thì kb lại vs mk nha

17 tháng 5 2017

xong từ lâu gồi

bn lớp mấy

17 tháng 5 2017

xong lâu r

14 tháng 11 2017

mik k mik nha =) nhoa nhoa

16 tháng 6 2017

kb nhé mk gửi lời zồi đó

15 tháng 1 2018

ĐKXĐ : X khác 1

pt <=> X^2+X+1/(X-1).(X^2+X+1) - 3X^2/(X-1).(X^2+X+1) = 2X.(X-1)/(X-1).(X^2+X+1)

<=> X^2+X+1/(X-1).(X^2+X+1) - 3X^2/(X-1).(X^2+X+1) - 2X^2-2X/(X-1).(X^2+X+1) = 0

<=> X^2+X+1-3X^2-2X^2+2X/(X-1).(X^2+X+1) = 0

<=> X^2+X+1-3X^2-2X^2+2X=0

<=> -4X^2+3X+1=0

<=> 4X^2-3X-1=0

<=> (X-1).(4X+1) = 0

<=> 4X+1=0 ( vì X khác 1 nên X-1 khác 0 )

<=> X = -1/4 (tm)

Vậy pt có tập nghiệm S = {-1/4}

Tk mk nha

24 tháng 11 2018

\(P=1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

     \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

      \(=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

     \(=2-\frac{1}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2n+1}{n+1}\)

24 tháng 11 2018

\(P=1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{n\left(n+1\right)}=1+1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{\left(n+1\right)}\)

\(\Rightarrow P=2-\frac{1}{\left(n+1\right)}=\frac{2n+1}{n+1}\)

10 tháng 10 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

  1. {\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}
  2. {\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}
  3. {\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}
  4. {\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}
  5. {\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
10 tháng 10 2018

cương khùng 

snvv 

10 tháng 3 2022

 \(a)P=\left(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\right).\left(\dfrac{x^2}{x+1}+1\right).\left(x\ne1;x\ne-1\right).\\ P=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}.\\ P=\dfrac{x^2-x}{x-1}.\dfrac{1}{x+1}.\\ P=\dfrac{x\left(x-1\right)}{x-1}.\dfrac{1}{x+1}.\\ P=x.\dfrac{1}{x+1}.\\ P=\dfrac{x}{x+1}.\)

\(P=\dfrac{1}{4}.\Rightarrow\dfrac{x}{x+1}=\dfrac{1}{4}.\\ \Leftrightarrow4x-x-1=0.\\ \Leftrightarrow3x-1=0.\\ \Leftrightarrow x=\dfrac{1}{3}\left(TM\right).\)

11 tháng 3 2018

ab=62