K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3

=>1-1/x+1=2/3

=>1/x+1=1/3

=>3=x+1

=>x=2

4 tháng 2 2018

Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)

=>\(1-\frac{1}{x+1}=\frac{2}{3}\)

=>\(\frac{1}{x+1}=1-\frac{2}{3}\)

=>\(\frac{1}{x+1}=\frac{1}{3}\)

=>\(x+1=3\)

=>\(x=2\)

8 tháng 5 2017

1.Tính

\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(E=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(E=\frac{1}{1}-\frac{1}{50}\)

\(E=\frac{49}{50}\)

Câu 2 mình không biết, xin lỗi nha

8 tháng 5 2017

E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  =1/1-1/50=49/50

23 tháng 3 2018

(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003 ghi loi giai nha ae

5 tháng 5 2019

\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{1}{2}-\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{-1}{6}\)

\(\frac{2}{3}x=\frac{-1}{6}+\frac{1}{3}\)

\(\frac{2}{3}x=\frac{1}{6}\)

\(x=\frac{1}{6}:\frac{2}{3}\)

\(x=\frac{1}{4}\)

~ Hok tốt ~

5 tháng 5 2019

\(\frac{3}{x+5}=15\%\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{15}{100}\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)

\(\Leftrightarrow x+5=20\)

\(\Leftrightarrow x=20-5\)

\(\Leftrightarrow x=15\)

18 tháng 7 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=201\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=201\)

\(1-\frac{1}{x+1}=201\)

\(\frac{1}{x+1}=1-201\)

\(\frac{1}{x+1}=-200\)

\(\Rightarrow x+1=-\frac{1}{200}\)

\(x=-\frac{1}{200}-1\)

\(x=-\frac{201}{200}\)

Vậy \(x=-\frac{201}{200}\)

8 tháng 3 2017

Gọi A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{19}{20}\)

\(\Rightarrow\) A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow\) A = 1 - \(\dfrac{1}{x+1}\)

\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{19}{20}\)

\(\Rightarrow1-\dfrac{19}{20}=\dfrac{1}{x+1}\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)

\(\Rightarrow\) x + 1 = 20\(\Rightarrow\) x=19

6 tháng 8 2016

1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016

<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016

<=> 1 - 1/x+1 = 2015/2016

<=> 1/x+1 = 1/2016

<=> x + 1 = 2016

<=> x = 2015

6 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)

 \(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)

9 tháng 3 2017

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);.....; \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1-\frac{1}{x+1}=\frac{x}{x+1}\)

=> \(\frac{x}{x+1}=\frac{19}{20}\)=> 20x=19x+19 => x=19

ĐS: x=19

9 tháng 3 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{19}{20}\)\(\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow\frac{x}{x+1}=\frac{19}{20}\)

\(\Rightarrow20x=19x+19\)\(\Rightarrow x=19\)

Vậy \(x=19\)

15 tháng 7 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)

\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)

\(\Leftrightarrow x+\frac{103}{50}=5\)

\(\Leftrightarrow x=5-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{147}{50}\)