Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
\(\left(1-\frac{1}{1007}\right)\left(1-\frac{1}{1008}\right)\left(1-\frac{1}{1009}\right)\left(1-\frac{1}{1010}\right)\left(1-\frac{1}{1011}\right)\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\cdot\frac{1007}{1008}\cdot\frac{1008}{1009}\cdot\frac{1009}{1010}\cdot\frac{1010}{1011}\cdot\frac{1011}{1012}\)
\(=\frac{1006\cdot1007\cdot1008\cdot1009\cdot1010\cdot1011}{1007\cdot1008\cdot1009\cdot1010\cdot1011\cdot1012}=\frac{503}{506}\)
=\(\frac{1006}{1007}.\frac{1007}{1008}.....\frac{1011}{1012}\)
=\(\frac{1006}{1012}\)
=\(\frac{503}{506}\)
nếu sai sót mong mọi người sửa lỗi đúng thì ủng hộ
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
=\(\frac{1}{2}-\frac{1}{201}\)
=\(\frac{199}{402}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)