Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có nghĩa thì \(2003-x\ge0\Rightarrow x\le2003\)
b) Có: \(\sqrt{2003-x}\ge0\forall x\le2003\)
\(\Rightarrow A=2004+\sqrt{2003-x}\ge2004\forall x\le2003\)
Dấu ''=" xảy ra khi \(\sqrt{2003-x}=0\)
\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)
Vậy với x = 2003 thì A đạt GTNN là 2004
a) Để \(2018+\sqrt{2018-x}\) thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)
b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên
\(A=2018+\sqrt{2018-x}\ge2018\)
Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)
a) Để a có nghĩa khi và chỉ khi
x - 5 \(\ge0\Rightarrow x\ge5\)
b) với A = 0
=> \(\sqrt{x-5}=0\)
=> x - 5 = 0
=> x= 5
Vậy x = 5 thì A = 0
(+) với A = 4
=> \(\sqrt{x-5}=4\)
=> x- 5 = 4^2
=> x - 5 = 16
=> x = 21
Vậy x = 21 thì A = 4
\(A=\frac{7-X}{X-10}\left(X\inℤ\right)\)
A) ĐỂ A CÓ NGHĨA => X - 10 ≠ 0 => X ≠ 10
B) ĐỂ A > 0
=> \(\frac{7-X}{X-10}>0\)
XÉT HAI TRƯỜNG HỢP :
1. \(\hept{\begin{cases}7-X>0\\X-10>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-X>-7\\X>10\end{cases}}\Leftrightarrow\hept{\begin{cases}X< 7\\X>10\end{cases}}\)( LOẠI )
2. \(\hept{\begin{cases}7-X< 0\\X-10< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-X< -7\\X< 10\end{cases}}\Leftrightarrow\hept{\begin{cases}X>7\\X< 10\end{cases}}\Leftrightarrow7< X< 10\)
VẬY VỚI 7 < X < 10 THÌ A > 0
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!