K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Bài 1:

Áp dụng hệ thức Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{-b}{a}=-4(1)\\ \frac{c}{a}=-5(2)\end{matrix}\right.\)

Từ (1) \(\Rightarrow b=4a\). Mà \(a+b=5\) nên \(\Leftrightarrow a+4a=5\Leftrightarrow 5a=5\Leftrightarrow a=1\)

\(\Rightarrow b=4a=4\)

Từ \((2)\Rightarrow c=-5a=-5\)

Do đó PT là: \(x^2+4x-5=0\) (thử lại thấy thỏa mãn)

Bài 2:

\(\left\{\begin{matrix} x=2\\ mx+y=m^2+3\end{matrix}\right.\) \(\Rightarrow 2m+y=m^2+3\)

\(\Leftrightarrow y=m^2-2m+3\)

Khi đó:

\(x+y=2+m^2-2m+3=m^2-2m+5\)

\(x+y=(m-1)^2+4\geq 4\) do \((m-1)^2\ge 0\forall m\in\mathbb{R}\)

Dấu bằng xảy ra khi \(m=1\)

Do đó $x+y$ đạt min khi \(m=1\)

5 tháng 3 2018

1)

Bài toán tương hệ : \(\left\{{}\begin{matrix}b^2-4c\ge0\\a+b=5\\\dfrac{-b}{a}=-4\\\dfrac{c}{a}=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b^2\ge4c\left(1\right)\\a+b=5\left(2\right)\\4a-b=0\left(3\right)\\5a+c=0\left(4\right)\end{matrix}\right.\)

(2) cộng (3) \(\Leftrightarrow5a=5\Leftrightarrow a=\dfrac{5}{5}=1\) thế vào (2) => b =4

thế vào (4) => c=-5 ; c <0 => (1) luôn đúng

Kết luận (không phải thử lai hành động vô nghĩa )

\(f\left(x\right)=x^2+4x-5\)

2)

\(\left\{{}\begin{matrix}x=2\\mx+y=m^2+3\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

thế (1) vào (2)

<=>\(y=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\)

x hằng số => x+y nhỏ nhất khi y nhỏ nhất

có (m-1)^2 >=0 đẳng thức khi m =1

=> y nhỏ nhất => m =1

kết luận :

m =1

bài bắt tìm "m" => để (x+y ) nhỏ nhất không bắt tính (x+y) do đâu cần biểu thức (x+y) phức tạp thêm vô bỏ

NV
23 tháng 4 2021

\(\Delta=a^2-4\left(b+2\right)>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)

\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)

Thế vào (1) để tìm a; b

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

24 tháng 11 2018

Bài 2:

1.Thay m=3, ta có:

\(\left\{{}\begin{matrix}3x+2y=5\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

24 tháng 11 2018

Bài 1:

\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y=-4\end{matrix}\right.\)

\(\Rightarrow\left|y-1\right|-4y=9\)\(\Leftrightarrow\left[{}\begin{matrix}y=-3,\left(3\right)\left(KTM\right)\left(ĐK:y\ge1\right)\\y=-1,6\left(TM\right)\left(ĐK:y< 1\right)\end{matrix}\right.\)

Thay y=-1,6 vào hpt, ta được:

\(\left\{{}\begin{matrix}\left|x+1\right|=2,4\\\left|x+1\right|=-10,4\left(vl\right)\end{matrix}\right.\)

Vậy pt vô nghiệm.

NV
22 tháng 4 2021

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau: a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\) bài 2: cho hệ...
Đọc tiếp

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau:

a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\)

bài 2: cho hệ phương trình \(\left\{{}\begin{matrix}x+y=1\\mx+y=2m\end{matrix}\right.\) xác định các giá trị của tham số m để hệ phương trình:

a) có nghiệm duy nhất b) vô nghiệm

c) vô số nghiệm

bài 3: hãy kiểm tra xem mỗi cặp số sau có là nghiệm của hệ phương trình tương ứng hay ko ?

a) (1;2) và \(\left\{{}\begin{matrix}3x-5y=-7\\2x+y=4\end{matrix}\right.\) b) (-2;5) và \(\left\{{}\begin{matrix}2x-3y=-19\\-3x+2y=7\end{matrix}\right.\)

bài 4: cho hệ phương trình \(\left\{{}\begin{matrix}2mx+y=m\\x-my=-1-6m\end{matrix}\right.\) Tìm các giá trị của tham số m để cặp số ( -2;1) là nghiệm của hệ phương đã cho.

bài 5: cho 2 phương trình đường thẳng:

d1: 2x-y=5 và d2: x-2y=1

a) vẽ hai đường thẳng d1 và d2 trên cùng một hệ trục tọa độ.

b) từ đò thị của d1 và d2 tìm nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}2x-y=5\\x-2y=1\end{matrix}\right.\)

c) cho đường thẳng d3: mx+(2m-1)y=3. Tìm các giá trị của tham số m để ba đường thẳng d1, d2 và d3 đồng quy.

cảm ơn mn nhé !

1
17 tháng 12 2022

Bài 5:

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)

c; THay x=3 và y=1 vào (d3), ta được:

3m+1(2m-1)=3

=>5m-1=3

=>5m=4

=>m=4/5

19 tháng 2 2019

Nguyễn Trương Nguyễn Việt Lâm Truong Viet Truong Nguyen Ánh Lê DƯƠNG PHAN KHÁNH DƯƠNG Khôi Bùi

NV
19 tháng 2 2019

Điều kiện thứ nhất là \(x_1-x_2=5?????\)

\(x_1^3-x_2^3=35\Leftrightarrow\left(x_1-x_2\right)\left(\left(x_1-x_2\right)^2+3x_1x_2\right)=35\)

\(\Leftrightarrow5\left(25+3x_1x_2\right)=35\Rightarrow x_1x_2=-6\)

\(\Rightarrow\left\{{}\begin{matrix}x_1-x_2=5\\x_1x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5+x_2\\x_1x_2+6=0\end{matrix}\right.\) \(\Rightarrow x_2\left(5+x_2\right)+6=0\)

\(\Rightarrow x^2_2+5x_2+6=0\Rightarrow\left\{{}\begin{matrix}x_2=-3\\x_1=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=2\\x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4+2m+n=0\\9-3m+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\n=-6\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x_1=3\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}9+3m+n=0\\4-2m+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-1\\n=-6\end{matrix}\right.\)