Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=a^2-4\left(b+2\right)>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)
Thế vào (1) để tìm a; b
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Bài 2:
1.Thay m=3, ta có:
\(\left\{{}\begin{matrix}3x+2y=5\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Bài 1:
\(\left\{{}\begin{matrix}\left|x+1\right|+\left|y-1\right|=5\\\left|x+1\right|-4y=-4\end{matrix}\right.\)
\(\Rightarrow\left|y-1\right|-4y=9\)\(\Leftrightarrow\left[{}\begin{matrix}y=-3,\left(3\right)\left(KTM\right)\left(ĐK:y\ge1\right)\\y=-1,6\left(TM\right)\left(ĐK:y< 1\right)\end{matrix}\right.\)
Thay y=-1,6 vào hpt, ta được:
\(\left\{{}\begin{matrix}\left|x+1\right|=2,4\\\left|x+1\right|=-10,4\left(vl\right)\end{matrix}\right.\)
Vậy pt vô nghiệm.
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
Bài 5:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)
c; THay x=3 và y=1 vào (d3), ta được:
3m+1(2m-1)=3
=>5m-1=3
=>5m=4
=>m=4/5
Nguyễn Trương Nguyễn Việt Lâm Truong Viet Truong Nguyen Ánh Lê DƯƠNG PHAN KHÁNH DƯƠNG Khôi Bùi
Điều kiện thứ nhất là \(x_1-x_2=5?????\)
\(x_1^3-x_2^3=35\Leftrightarrow\left(x_1-x_2\right)\left(\left(x_1-x_2\right)^2+3x_1x_2\right)=35\)
\(\Leftrightarrow5\left(25+3x_1x_2\right)=35\Rightarrow x_1x_2=-6\)
\(\Rightarrow\left\{{}\begin{matrix}x_1-x_2=5\\x_1x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5+x_2\\x_1x_2+6=0\end{matrix}\right.\) \(\Rightarrow x_2\left(5+x_2\right)+6=0\)
\(\Rightarrow x^2_2+5x_2+6=0\Rightarrow\left\{{}\begin{matrix}x_2=-3\\x_1=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=2\\x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4+2m+n=0\\9-3m+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\n=-6\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x_1=3\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}9+3m+n=0\\4-2m+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-1\\n=-6\end{matrix}\right.\)
Bài 1:
Áp dụng hệ thức Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{-b}{a}=-4(1)\\ \frac{c}{a}=-5(2)\end{matrix}\right.\)
Từ (1) \(\Rightarrow b=4a\). Mà \(a+b=5\) nên \(\Leftrightarrow a+4a=5\Leftrightarrow 5a=5\Leftrightarrow a=1\)
\(\Rightarrow b=4a=4\)
Từ \((2)\Rightarrow c=-5a=-5\)
Do đó PT là: \(x^2+4x-5=0\) (thử lại thấy thỏa mãn)
Bài 2:
\(\left\{\begin{matrix} x=2\\ mx+y=m^2+3\end{matrix}\right.\) \(\Rightarrow 2m+y=m^2+3\)
\(\Leftrightarrow y=m^2-2m+3\)
Khi đó:
\(x+y=2+m^2-2m+3=m^2-2m+5\)
\(x+y=(m-1)^2+4\geq 4\) do \((m-1)^2\ge 0\forall m\in\mathbb{R}\)
Dấu bằng xảy ra khi \(m=1\)
Do đó $x+y$ đạt min khi \(m=1\)
1)
Bài toán tương hệ : \(\left\{{}\begin{matrix}b^2-4c\ge0\\a+b=5\\\dfrac{-b}{a}=-4\\\dfrac{c}{a}=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b^2\ge4c\left(1\right)\\a+b=5\left(2\right)\\4a-b=0\left(3\right)\\5a+c=0\left(4\right)\end{matrix}\right.\)
(2) cộng (3) \(\Leftrightarrow5a=5\Leftrightarrow a=\dfrac{5}{5}=1\) thế vào (2) => b =4
thế vào (4) => c=-5 ; c <0 => (1) luôn đúng
Kết luận (không phải thử lai hành động vô nghĩa )
\(f\left(x\right)=x^2+4x-5\)
2)
\(\left\{{}\begin{matrix}x=2\\mx+y=m^2+3\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
thế (1) vào (2)
<=>\(y=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\)
x hằng số => x+y nhỏ nhất khi y nhỏ nhất
có (m-1)^2 >=0 đẳng thức khi m =1
=> y nhỏ nhất => m =1
kết luận :
m =1
bài bắt tìm "m" => để (x+y ) nhỏ nhất không bắt tính (x+y) do đâu cần biểu thức (x+y) phức tạp thêm vô bỏ