Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(5^{10}.125^2.625^3=5^{10}.\left(5^3\right)^2.\left(5^4\right)^3=5^{10}.5^6.5^{12}=5^{10+6+12}=5^{28}\)
a: \(=5^{10}\cdot5^6\cdot5^{12}=5^{28}\)
b: \(=10^3\cdot10^8\cdot10^{15}=10^{26}\)
c: \(=2^{20}\cdot2^{20}=2^{40}\)
d: \(=2^{16}\cdot2^{16}\cdot3^8=2^{32}\cdot3^8\)
e: \(=\dfrac{3^{24}}{3^8}=3^{16}\)
f: \(=2^{12}\cdot2^{20}\cdot2^5=2^{37}\)
a. 84.165 = (23)4. (24)5 = 212. 220= 232
b. 540.1252.6253= 540. (53)2.(54)3= 540.56.512= 558
c. 274.8110= (33)4.(34)10= 312.340= 352
d. 103 . 1005 .10004= 103. (102)5.(103)4= 103.1010.1012= 1025
\(a,3^6\cdot3^{24}...b,5^{20}\cdot5^{30}\cdot5^8...c,10^2\cdot10^6\cdot10^{12}\)k mik nka
Nữ hoàng cảm ơn nhưng vị thám tử tài ba có thể viết cách giải ra đc không ạ
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a) Ta có: \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
Ta thấy: 15 > 14 => 515 > 514
Vậy 1255 > 257
b) \(9^{20}=\left(3^2\right)^{20}=3^{60}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
Vì 60 > 39 => 360 > 339
Vậy 920 > 2713
c) \(3^{54}=3^{2.27}=3^2.3^{27}=9.3^{27}\)
\(2^{81}=2^{3.27}=2^3.2^{27}=8.2^{27}\)
Vì 9 > 8 và 327 > 227
Vậy 354 > 281
Bài 1:
\(\text{a) }x.x^2.x^3.x^4.x^5.....x^{49}.x^{50}\)
\(=x^{1+2+3+4+5+...+49+50}\)
\(=x^{\frac{51.50}{2}}\)
\(=x^{1275}\)
\(\text{b) Ta có:}\)
\(4^{15}=\left(2^2\right)^{15}=2^{2.15}=2^{30}\)
\(8^{11}=\left(2^3\right)^{11}=2^{3.11}=2^{33}\)
\(\text{Vì }2^{30}< 2^{33}\text{ nên }4^{15}< 8^{11}\)
Bài 2: Tìm x
\(\left(x-1\right)^4:3^2=3^6\)
\(\Rightarrow\left(x-1\right)^4=3^6\times3^2\)
\(\Rightarrow\left(x-1\right)^4=3^8\)
\(\Rightarrow\left(x-1\right)^4=3^{2.4}\)
\(\Rightarrow\left(x-1\right)^4=\left(3^2\right)^4\)
\(\Rightarrow x-1=9\)
\(\Rightarrow x=10\)
Bài 3 và bài 4 mk làm sau
Bài 1 : a) \(x.x^2.x^3.x^4.....x^{49}.x^{50}=x^{1+2+3+...+49+50}\) (Dễ rồi tự tính)
b) \(\hept{\begin{cases}4^{15}=\left(2^2\right)^{15}=2^{30}\\8^{11}=\left(2^3\right)^{11}=2^{33}\end{cases}}\)Rồi tự so sánh đi
Bài 2 :
\(\left(x-1\right)^4\div3^2=3^6\Leftrightarrow\left(x-1\right)^4=3^8=\left(3^2\right)^4=9^4\Leftrightarrow x-1=9\Leftrightarrow x=10\)
Bài 3 :
\(\hept{\begin{cases}27^{15}=\left(3^3\right)^{15}=3^{45}\\81^{11}=\left(3^4\right)^{11}=3^{44}\end{cases}}\) nt
a 5.125.625=5.5^3.5^4=5^8
b 10.100.1000=10.10^2.10^3=10^6
c 8^4.16^5.32=2^3^4.2^4^5.2^5=2^12.2^20.2^5=2^37
a) = \(5^1\cdot5^3\cdot5^4=5^{1+3+4}=5^8\)
b) = \(10^1\cdot10^2\cdot10^3=10^{1+2+3}=10^6\)
c) = \(2^{12}\cdot2^{20}\cdot2^5=2^{12+20+5}=2^{37}\)