Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(=\dfrac{3}{7}\cdot\dfrac{13}{8}-\dfrac{3}{7}\cdot\dfrac{7}{9}-\dfrac{13}{8}\cdot\dfrac{3}{7}+\dfrac{13}{8}\cdot\dfrac{8}{39}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}=0\)
b: \(=\dfrac{1989\left(1990+2\right)}{1992\left(1991-2\right)}=1\)
Khi tử số = tử số, mẫu số của phân số nào lớn hơn thì phân số đó bé hơn
1/ a/ ta có: \(\frac{20}{39}>\frac{14}{39}\left(20>14\right)\);
\(\frac{22}{27}>\frac{22}{29}\left(27< 29\right)\);
\(\frac{18}{23}>\frac{18}{41}\left(23< 41\right)\).
=> \(\frac{20}{39}+\frac{22}{27}+\frac{18}{23}>\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b/ \(\left(\frac{3}{8}\right)^3=\left(\frac{3}{8}\right)^3\);
\(\left(\frac{3}{8}\right)^4=\left(\frac{3}{8}\right)^4\);
\(\left(\frac{4}{8}\right)^4>\left(\frac{4}{8}\right)^3\)
=> A > B
Mấy bài còn lại cứ làm tương tự...
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105