Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)
Em khoái nhứt là làm tổ hợp trên diễn đàn vì không phải đánh Latex
Bạn ơi, bản chất ý bạn nói thì mik hiểu rõ nhưng mik cần nhờ bạn trình bày chi tiết giùm mik(ko biết cách trình bày ý mà)
Thanks bạn nhìu nha.