K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

4N = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 2015.2016.2017.(2018-2014)

4N = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2015.2016.2017.2018 - 2014.2015.2016.2017

4N = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 2015.2016.2017.2018) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 2014.2015.2016.2017)

4N = 2015.2016.2017.2018 - 0.1.2.3

4N = 2015.2016.2017.2018

N = 2015.2016.504.2018 (kq hơi to nên bn tự tính nhé)

22 tháng 11 2017

minh chi can ket qua thoi cung duoc ko can giai ra dau

ai lam dung minh kick

22 tháng 11 2017

Đặt biểu thức trên = A 

Xét : B = 1.2.3+2.3.4+....+n.(n+1).(n+2)

       4B = 1.2.3.4+2.3.4.4+....+n.(n+1).(n+2).4

         = 1.2.3.4+2.3.4.(5-1)+....+n.(n+1).(n+2).[(n+3)-(n-1)]

         = 1.2.3.4+2.3.4.5-1.2.3.4+....+n.(n+1).(n+2).(n+3)-(n-1).n.(n+1).(n+2)

         = n.(n+1).(n+2).(n+3)

=> B = n.(n+1).(n+2).(n+3)/4

=> A = 222315.222316.222317.222318/4

k mk nha

24 tháng 7 2017

___Vương Tuấn Khải___

Ta có: B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
=> 4B = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
=> 4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
=> 4B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
=> 4B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
=> 4B = 17.18.19.20
=> 4B = 116280
=> B = 29070
edu0edu0+1 nếu thích, -1 nếu không thích
24 tháng 7 2017

B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6 

Theo bài ra ta có:

B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
Ta nhân cả 2 vế với số 4 thì được phương trình như sau;
4*B = 4*(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
<=> 4*B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
<=> 4*B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
<=> 4*B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
<=> 4*B = 17.18.19.20
<=> 4*B = 116280
<=> B = 116280/4 = 29070

Bùi Lê Anh Khoa

Ta có: B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
=> 4B = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
=> 4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
=> 4B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
=> 4B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
=> 4B = 17.18.19.20
=> 4B = 116280
=> B = 29070

18 tháng 9 2017

Ta có: B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
=> 4B = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
=> 4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
=> 4B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
=> 4B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
=> 4B = 17.18.19.20
=> 4B = 116280
=> B = 29070

9 tháng 10 2016

21320

21 tháng 3 2017

Em nói thật em mới học lớp 6 Màu em đã phải làm bài này rồi thật đấu không phải đùa đâu

21 tháng 11 2017

Đặt

\(A=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+.......+n\left(n+1\right)\left(n+2\right)\)\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+.......+n\left(n+1\right)\left(n+2\right)\cdot4\)\(4A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+........+n\left(n+1\right)\left(n+2\right)\left(n+3-n-1\right)\)\(4A=1\cdot2\cdot3\cdot4-0+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Vậy \(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

25 tháng 7 2016

Câu a)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-2\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-\left(2^{100}+2^{98}+2^{96}+...+2^4+2^2\right)\)
\(=2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(=\frac{2^2\cdot\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{\left(2^{101}+2^{99}+2^{97}+...+2^5+2^3\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{2^{101}-2}{3}\)

6 tháng 4 2017

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2015.2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{2.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2016.2017}\)

\(B=\frac{\frac{1}{1.2}-\frac{1}{2016.1017}}{2}\)

29 tháng 11 2016

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

2 tháng 7 2018

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3.3.2.3.3.1+2.3.3.3.4.3+3.3.4.3.3.5+3.4.5.3.6.3+3.5.3.6.7.3}+\frac{8}{27}\)

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3^3.\left(1.2.3+2.3.4+3.4.5+4.5.6+5.6.7\right)}+\frac{8}{27}\)

\(C=\frac{1}{3^3}+\frac{8}{27}=\frac{1}{27}+\frac{8}{27}=\frac{9}{27}=\frac{1}{3}\)

Vậy C = \(\frac{1}{3}\)