K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

\(2xy-x+y-2=0\)

\(\Leftrightarrow4xy-2x+2y-4=0\)

\(\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)-3=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(2x+1\right)\left(2y-1\right)=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Nếu \(2x+1=1\) thì \(2y-1=3\) \(\Rightarrow x=0\) thì \(y=2\)

Nếu \(2x+1=3\) thì \(2y-1=1\)  \(\Rightarrow x=1\) thì y = \(1\)

Nếu \(2x+1=-1\) thì \(2y-1=-3\) \(\Rightarrow x=-1\) thì \(y=-1\)

Nếu \(2x+1=-3\) thì \(2y-1=-1\) \(\Rightarrow x=-2\) thì y = \(0\)

Vậy \(\left(x;y\right)=\left(-2;0\right);\left(-1;-1\right);\left(0;2\right);\left(1;1\right)\)

21 tháng 9 2016

Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0

<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0

<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0

<=> (x - y - 1)2 + (y + 2)2 = 0

<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)

<=> (x; y) = (-1; -2)

31 tháng 8 2020

x2 - 2xy + 2y2 + 2x - 6y + 4 = 0

<=> [ ( x2 - 2xy + y2 ) + 2( x - y ) + 1 ] + ( y2 - 4y + 4 ) - 1 = 0

<=> [ ( x - y )2 + 2( x - y ) + 1 ] + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 = 1

Nhận thấy rằng VT là tổng của hai bình phương 

=> VP cũng phải là tổng của hai bình phương

Ta có : 1 = 12 + 02

               = (-1)2 + 02

Ta xét 4 trường hợp sau :

1.\(\hept{\begin{cases}\left(x-y+1\right)^2=1^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

2. \(\hept{\begin{cases}\left(x-y+1\right)^2=\left(-1\right)^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow x=y=2\)

3. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=1^2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

4. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=\left(-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy ( x ; y ) = { ( 0 ; 2 ) , ( 2 ; 2 ) , ( 2 ; 3 ) , ( 0 ; 1 ) }

31 tháng 8 2020

\(x^2-2xy+y^2+2x-6y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2-2y+2x+1\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=1\)

Mà \(x;y\in Z\)\(\left(x-y+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-y=-1\\y=3\end{cases}}\) hoặc \(\orbr{\begin{cases}x-y=0\\y=2\end{cases}}\)

<=> x = 2 ; y = 3 hoặc x = y = 2 ( tm x ; y thuộc Z )

Vậy các cặp số x ; y thỏa mãn pt trên là : ( 2 ; 3 ) ; ( 2 ; 2 ) 

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp

25 tháng 2 2021

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813