\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

...

14 tháng 4 2020

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

Rồi bn tự tìm x nha!hok tot

4 tháng 5 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)

\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)

Vậy x = 2019

22 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

22 tháng 7 2017

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

28 tháng 2 2018

\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+........+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+........+\frac{1}{x\left(x+1\right)}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2010}\)

=> x + 1 = 2010

=> x = 2010 - 1

=> x = 2009

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

17 tháng 3 2019

a) Ta có:

\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)

\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)

\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)

\(=x+2x+-3+1-21\)

\(=3x-23\)

=> \(3x-23=2020\)

\(3x=2020+23=2043\)

=> \(x=2043:3=681\)

17 tháng 3 2019

Nhầm

\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)

\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)

22 tháng 2 2018

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)