K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)

\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2003}\)

\(\Rightarrow x+1=2003\)

\(x=2002\)

Vậy x = 2002

23 tháng 4 2017

Bài này lớp 6 thật à bạn. 

16 tháng 5 2016

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

16 tháng 5 2016

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000

 

26 tháng 6 2017

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+......+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}.\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x = 2010

19 tháng 4 2017

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)

\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)

=>x+1=2005

=>x=2004

28 tháng 4 2017

1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015

25 tháng 3 2016

Tu de bai ta co 

1/6+1/12+1/20+...+1/(x*(X+1))=1999/4002

Suy ra 1/(2*3)+1/(3*4)+1/(4*5)+...+1/(x*(x+1))=1999/4002

Suy ra 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=1999/4002

Suy ra 1/2-1/(x+1)=1999/4002

Suy ra 1/(x+1)=1/2001

Suy ra x+1=2001

Suy ra x=2000

25 tháng 3 2016

2000 do ban

28 tháng 3 2017

\(\frac{1}{3}\)+  \(\frac{1}{6}\)+  \(\frac{1}{10}\)+  ..... +\(\frac{1}{X.\left(X+1\right)}\)=\(\frac{1999}{2001}\)

\(\frac{2}{2.3}\)+\(\frac{2}{2.6}\)+\(\frac{2}{2.10}\)+  ...... + \(\frac{1}{X.\left(X+1\right)}\)=\(\frac{1999}{2001}\)

\(\frac{2}{2.3}\)\(+\)\(\frac{2}{3.4}\)\(+\) \(\frac{2}{4.5}+...\) \(+\) \(\frac{1}{x\left(x+1\right)}\)=\(\frac{1999}{2001}\)

\(2\)\(.\)(\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\) ....) \(+\)\(\frac{1}{x\left(x+1\right)}\)\(=\)\(\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\)\(\frac{1999}{2001}:2\)

\(\frac{1}{2}-\frac{1}{x+1}\)\(=\frac{1999}{2001}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}\)

\(\frac{1}{x+1}=\frac{2}{4002}\)

\(\frac{1}{x+1}=\frac{1}{2001}\)

\(\Rightarrow x+1=2001\)

\(\Rightarrow x=2000\)

chúc bạn học giỏi. đúng thì k cho mình nha

28 tháng 3 2017

quy luật gì vậy??

29 tháng 6 2015

Chưa chắc là đề sai!!!!!!!!!!!!!!

29 tháng 6 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}.\frac{1}{2}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(x+1=2003\)

\(x=2002\)

21 tháng 8 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{199}{2001}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2001}\)

\(\Leftrightarrow x+1=2001\Rightarrow x=2000\)

3 tháng 3 2017

1) Ta có: A=\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\right)=\)

=\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\)

=\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{1}{3}.\frac{x+2}{x+3}=\frac{125}{376}\)

<=> \(\frac{x+2}{x+3}=\frac{375}{376}\)<=> 376(x+2)=375(x+3) <=> 376x+752=375x+1125 => X=373

x=373 nha bạn

mk đang âm điểm,tk mk nha