Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) $(5-2x)^2-16=0$
$=>(5-2x)^2-4^2=0$
$=>(5-2x-4)(5-2x+4)=0$
$=>(1-2x)(9-2x)=0$
\(=>\left[{}\begin{matrix}1-2x=0=>x=0,5\\9-2x=0=>x=4,5\end{matrix}\right.\)
b) $x^2-4x=29$
$=>x^2-4x-29=0$
$=>(x^2-4x+4)-33=0$
$=>(x-2)^2-(\sqrt{33})^2=0$
$=>(x-2-\sqrt{33})(x-2+\sqrt{33})=0$
\(=>\left[{}\begin{matrix}x-2-\sqrt{33}=0=>x=\sqrt{33}+2\\x-2+\sqrt{33}=0=>x=2-\sqrt{33}\end{matrix}\right.\)
Bài 1:
a) \(\left(5-2x\right)^2-16=0\) (1)
\(\Leftrightarrow\left(5-2x\right)^2=16\)
\(\Leftrightarrow5-2x=\pm4\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{1}{2};\dfrac{9}{2}\right\}\)
b) \(x^2-4x=29\) (2)
\(\Leftrightarrow x^2-4x-29=0\)
\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{33}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+2\sqrt{33}}{2}\\x=\dfrac{4-2\sqrt{33}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{33}\\x=2-\sqrt{33}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{2-\sqrt{33};2+\sqrt{33}\right\}\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\) (3)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9x^2+18x+9=15\)
\(\Leftrightarrow x^3+27x-27-x^3+27+18x+9=15\)
\(\Leftrightarrow45x+9=15\)
\(\Leftrightarrow45x=15-9\)
\(\Leftrightarrow45x=6\)
\(\Leftrightarrow x=\dfrac{2}{15}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{2}{15}\right\}\)
d) \(2\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(2x-3\right)+x\left(x^2+8\right)=\left(x+1\right)\left(x^2-x+1\right)\)(4)
\(\Leftrightarrow2\left(x^2-25\right)-\left(2x^2-3x+4x-6\right)+x^3-8x=x^3+1\)
\(\Leftrightarrow2x^2-50-\left(2x^2+x-6\right)+x^3-8x=x^3+1\)
\(\Leftrightarrow2x^2-50-2x^2-x+6-8x=1\)
\(\Leftrightarrow-44-9x=1\)
\(\Leftrightarrow-9x=1+45\)
\(\Leftrightarrow-9x=45\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-5\right\}\)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
a,b,c,f tìm cách áp dụng HĐT vào nhé! động não tí xem :)
d) Sửa đề :\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=199+195+...+3\)
Khi đó tổng sẽ là:
\(\dfrac{\left(199+3\right)\left[\dfrac{\left(199-3\right)}{4}+1\right]}{2}=5050.\)
e) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1\)
\(=2^{128}.\)
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)
d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)
\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)
\(=\dfrac{x}{x+y}\)
1a)
Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)
\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)
Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)
Vậy A là hợp số
1b)
Ta có :
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)
\(=2^{2012}-1+1=2^{2012}\)
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)