K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

m​inh lam bai nay roi nhung minh ko co nha nen minh ko nho

2 tháng 7 2016

bn cố nhớ đi, giúp mk

5 tháng 5 2016

\(\frac{2x+1}{3}=\frac{5}{2}\)

\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)

2x=  15/2 - 1 = 13/2

x = 13/2 : 2

x = 13/4 

b) 2x + 2x+1 + 2x+2 + 2x+3 = 480

2x.(1+ 2 +22 + 23) = 480

2x . 15 = 480

2x = 480 : 15 = 32

2x = 25 => x = 5

c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)

\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)

\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)

< = > 3x=  -6 => x = -2

 

5 tháng 5 2016

Hỏi đáp Toán

30 tháng 6 2016

a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)

\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)

\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)

\(6^{x-1}.217=6^{15}.217\)

\(6^{x-1}=6^{15}\)

\(x-1=15\)

\(x=16\)

b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)

\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)

\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)

\(3^x=3^{13}\)

\(x=13\)

30 tháng 6 2016

\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)

=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)

=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)

=> \(3^x.3^4-4.3^x=-386339074,3\)

=> \(3^x.\left(3^4-4\right)=-386339074,3\)

=> \(3^x.77=-386339074,3\)

=> \(3^x=-386339074,3:77\)

=> \(3^x=-5017390,575\)

=> x = ... chắc tự ngồi tính đc

5 tháng 10 2016

\(\frac{12+x}{43-x}=\frac{2}{3}\)\(\Rightarrow3\left(12+x\right)=2\left(43-x\right)\)

\(\Rightarrow36+3x=86-2x\)

\(\Rightarrow36+3x-86+2x=0\)

\(\Rightarrow5x=50\)

\(\Rightarrow x=10\)

 

5 tháng 10 2016

\(\frac{12+x}{43-x}=\frac{2}{3}\)

\(\frac{\left(12+x\right)\times3}{\left(43-x\right)\times3}=\frac{2\times\left(43-x\right)}{3\times\left(43-x\right)}\)

\(\left(12+x\right)\times3=2\times\left(43-x\right)\)

\(36+x\times3=86-2\times x\)

\(x\times3+2\times x=86-36\)

\(x\times5=50\)

      \(x=50\div5\)

      \(x=10\)

\(A=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{98}{99}=\dfrac{2}{99}\)

a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)

\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)

\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)

b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)

\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)

27 tháng 6 2016

a) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)

b)\(\left(2x-3\right)^3=343\)

\(\left(2x-3\right)^3=7^3\)

\(2x-3=7\)

\(2x=7+3\)

\(2x=10\)

\(x=10:2\)

\(x=5\)

27 tháng 6 2016

a) Ta có: \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

<=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

<=> \(x=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy x=5/6

b)\(\left(2x-3\right)^3=343\)

<=>\(2x-3=\sqrt[3]{343}=7\)

<=> 2x=10 <=> x=5

c) \(\left(\frac{1}{3}\right)^{2x}+1=\frac{1}{7}\)

<=>\(\left(\frac{1}{3}\right)^{2x}=\frac{-6}{7}\)

<=> \(\left(\frac{1}{3^x}\right)^2=-\frac{6}{7}\)(vô lí vì \(\left(\frac{1}{3^x}\right)^2\ge0\))

Vậy ko tìm được x thỏa mãn.

d)\(\left(2x-3\right)^2=9\)

=>\(\left[\begin{array}{nghiempt}2x-3=3\\2x-3=-3\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=3\\x=0\end{array}\right.\)

Vậy x=3 hoặc x=0.

e) \(\left(x-3\right)^6=\left(x-3\right)^7\)

<=> \(\left(x-3\right)^7-\left(x-3\right)^6=0\)

<=> \(\left(x-3\right)^6\left(x-3-1\right)=0\)

<=>\(\left(x-3\right)^6\left(x-4\right)=0\)

<=> \(\left[\begin{array}{nghiempt}x-3=0\\x-4=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=3\\x=4\end{array}\right.\)

Vậy x \(\in\left\{3;4\right\}\)

5 tháng 5 2016
x 7 9 
x2 49 81 
x2-49-0+++
x2-81---0+
A+0-0+

dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9

5 tháng 5 2016

b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)

            =1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)

                (2015 số 1)

            =1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))

            =\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)

            =2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))

            =2016(\(\frac{1}{2}\)+\(\frac{1}{3}\)+.......+\(\frac{1}{2015}\)+\(\frac{1}{2016}\))
vậy x= 2016