Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n;n+1;n+2;n+3 là bốn số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)
Bài 1:
a) \(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)x=14\) (1)
\(\Leftrightarrow2x^2-4x+8+x^3-2x^2+4x+\left(-3-x^2\right)x=14\)
\(\Leftrightarrow8+x^3-3x-x^3=17\)
\(\Leftrightarrow8-3x=14\)
\(\Leftrightarrow-3x=14-8\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2\right\}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\) (2)
\(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-\left(4x-15x^2+4\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\dfrac{43}{42}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{43}{42}\right\}\)
Bài 2: tự làm đi :)))))))))))
Bài 3:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
3. Ta có: n(2n - 3) - 2n(n+1) = 2n\(^{^2}\) - 3n - 2n\(^{^2}\) - 2n
= -5n
Mà -5n \(⋮\) 5
Vậy n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
1/ Ta có: \(1999^{30}\equiv\left(1999^2\right)^{15}\equiv8^{15}\equiv\left(8^3\right)^5\equiv16^5\equiv1\left(mod31\right)\)
\(\Rightarrow\left(1999^{30}\right)^{66}\equiv1\left(mod31\right)\Leftrightarrow1999^{1980}\equiv1\left(mod31\right)\) (1)
Lại có: \(1999^{21}\equiv\left(1999^2\right)^{10}.1999\equiv8^{10}.15\equiv\left(8^5\right)^2.15\equiv15\left(mod31\right)\) (2)
Từ (1) và (2) \(\Rightarrow1999^{1980}.1999^{21}\equiv15\Leftrightarrow1999^{2001}\equiv15\left(mod31\right)\)
Hay \(1999^{2001}\) chia cho 31 có số dư là 15.
P/s: Cả năm nay không làm dạng này nên không chắc nha! Lục nghề mất r
2) Khó đây, không chắc đâu. Mình thử dùng quy nạp:
Trước hết ta chứng minh nó với n = 1. Tức là chứng minh \(1924^{2003^{2004}}+1920⋮124\)
\(\Leftrightarrow1924^{2003^{2004}}+1920\equiv0\left(mod124\right)\)
Tách: 124 =4 . 31
Ta có: \(1924\equiv0\left(mod4\right)\Leftrightarrow1924^{2003^{2004}}\equiv0\left(mod4\right)\)
Lại có: \(1924^{30}\equiv1\left(mod31\right)\) (bạn tự chứng minh được mà:D)
Mà: \(2003^{2004}\equiv23^{2004}\equiv19^{1002}\equiv\left(19^2\right)^{501}\equiv1\left(mod30\right)\)
Đặt \(2003^{2004}=30k+1\). Do đó \(1924^{2003^{2004}}=1924^{30k+1}=\left(1924^{30}\right)^k.1924\equiv1.1924\equiv2\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-2\equiv0\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-2-31.2\equiv0\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-64\equiv0\left(mod31\right)\)
Mà \(1924^{2003^{2004}}-64\equiv0\left(mod4\right)\)
Suy ra \(1924^{2003^{2004}}-64\equiv0\left(mod4.31=124\right)\)
Do đó: \(1924^{2003^{2004}}+1920\equiv64+1920\equiv0\left(mod124\right)\)
Vậy nó đúng trong trường hợp n = 1. Ta giả sử nó đúng đến n = k.
Tức là: \(1924^{2003^{2004^k}}+1920⋮124\)
Ta đi chứng minh: \(1924^{2003^{2004^{k+1}}}+1920⋮124\)
Tới đây bí cmnr:(