Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9
\(942^{60}=\left(942^2\right)^{60}\)
Ta có
942 chia hết cho 3
Mà 3 là số nguyên tố
=> 9422 chia hết cho 32
=> 9422 chia hết cho 9
\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9
=> đpcm
Cm chia hết cho 2
Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2
=> Sai đề
a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)
Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4
Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3
Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4
tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
Câu b) 7700 cũng gần như thế thôi ông Giáo ạ
Bg
Ta có: 2427700 - 761025 = 2424.1925 - (...6)
= (2424)1925 - (...6)
= (...6)1925 - (...6)
= (...6) - (...6)
= (...0) \(⋮\)10
=> 2427700 - 761025 \(⋮\)10
=> ĐPCM
a) Ta có: \(942^{60}=\left(942^4\right)^{15}=\left(\overline{...6}\right)^{15}=\overline{...6}\)
\(351^{37}=\overline{...1}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...1}\right)=\overline{...5}⋮5\) nên \(942^{60}-351^{37}⋮5\) (đpcm)
b) Ta có: \(242^{2700}=\left(2400^4\right)^{675}=\left(\overline{...6}\right)^{675}=\overline{...6}\)
\(76^{1025}=\overline{...6}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\) nên \(242^{2700}-76^{1025}⋮10\) (đpcm)
c) Để 995 - 984 + 973 - 962 chia hết cho cả 2 và 5 thì 995 - 984 + 973 - 962 phải chia hết cho 10
Có: \(99^5=99^2.99=\overline{...1}.99=\overline{...9}\)
\(98^4=\left(98^2\right)^2=\overline{...6}\)
\(97^3=\overline{...3}\)
\(96^2=\overline{...6}\)
\(\left(\overline{...9}\right)-\left(\overline{...6}\right)+\left(\overline{...3}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\)
\(\Rightarrow99^5-98^4+97^3-96^2⋮10\) (đpcm)
Bài 1:
a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)
Để \(n+8⋮n\) thì \(8⋮n\)
\(\Rightarrow n\in\left\{1;2;4;8\right\}\)
Vậy.....
b.c tương tự
Bài 2:
a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)
Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)
b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)
Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)