K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a) Ta có: \(x^2-x-6\)

\(=x^2-x-9+3\)

\(=\left(x^2-9\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) Sử dụng phương pháp Hệ số bất định

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

2
5 tháng 7 2018

Bài 2:

a)  \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

b)  \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)

c)  \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề

      còn mấy câu nữa bn đăng lại nhé

5 tháng 7 2018

Bài 1: 

a)  \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

b)   \(x^4+4x^2-5=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c)  \(x^3-19x-30=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

1. Phân tích đa thức thành nhân tử: a. x2 - x - 6 b. x4 + 4x2 - 5 c. x3 - 19x - 30 2. Phân tích thành nhân tử: a. A = ab(a - b) + b(b - c) + ca(c - a) b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2) c. C = (a + b + c)3 - a3 - b3 - c3 3. Phân tích thành nhân tử: a. (1 + x2)2 - 4x (1 - x2) b. (x2 - 8)2 + 36 c. 81x4 + 4 d. x5 + x + 1 4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n. b. Chứng minh rằng: n3 - 3n2 - n + 3 chia...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

0

4. Đặt  t= a^2 +a

Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)

5. Đặt t = x^2 +x+1

Ta có: t(t+1) -12

= t^2 +t-12

= (t-3)(t+4)

= ( x^2 +x -2 ) (x^2+x+5)

 = (x-1) ( x+2) (x^2+x+5)

6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1

= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)

7.  x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1

=  (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)

         a3 - 7a - 6 

= a3 - a - 6a - 6 

= a ( a2 - 1 ) - 6 ( a + 1 )

= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )

= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]

= ( a + 1 ) ( a2 - a - 6  )

= ( a + 1 ) ( a2 + 2a - 3a - 6 )

= ( a + 1 ) ( a + 2 ) ( a - 3 )

NHÂN CÁC ĐA THỨC 1. Tính giá trị: B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7 2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào? 3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2 CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ 1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264 +...
Đọc tiếp

NHÂN CÁC ĐA THỨC

1. Tính giá trị:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7

2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?

3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

1

Bài 3:

a: \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

\(=x^4+2x^2+1-4x+4x^3\)

=(x^2+2x-1)^2

b: (x^2-8)^2+36

=x^4-16x^2+64+36

=x^4+20x^2+100-36x^2

=(x^2+10)^2-(6x)^2

=(x^2-6x+10)(x^2+6x+10)

c: 81x^4+4

=81x^4+36x^2+4-36x^2

=(9x^2+2)^2-36x^2

=(9x^2-6x+2)(9x^2+6x+2)

d: x^5+x+1

=(x^2+x+1)(x^3-x^2+1)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn