Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Gọi quãng đường AB là x ;quãng đường đi từ A đến B là \(\frac{x}{50}\);quãng đường đi từ B đến A là \(\frac{x}{70}\)Ta có :
\(\frac{x}{50}-\frac{x}{70}=4\)
\(\frac{7x}{350}-\frac{5x}{350}=\frac{1400}{350}\)
\(\frac{7x-5x}{350}=\frac{1400}{350}\)
\(\frac{2x}{350}=\frac{1400}{350}\)
\(2x=1400\)
\(x=1400:2\)
\(x=700\)
Vậy quãng đường AB là 700 km
Số phần sau khi đã đổ vào thùng 3
1-2/3=1/3(phần)
Số lít mà thùng ba đã được đổ
123.1/3=41(lít)
Tổng số lít của thùng 1 và thùng 2
123-41=82(lít)
Số lít của thùng 1
(82-4):2=39(lít)
Số lít của thùng 2
82-39=43(lít)
Gọi a là thùng 1
Gọi b là thùng 2
Gọi c là thùng 3
Ta có được
a-5+9
b+5-7
c+7-9
=>39-5+9=43(lít)
=>43+5-7=41(lít)
=>41+7-9=39(lít)
Vậy:thùng 1 là 43 lít
thùng 2 là 41 lít
thùng. 3 là 39 lít
Sau khi đổ thì tổng số lít dầu vẫn là 123l. Ta có sơ đồ:
Thùng 1 Thùng 2 Thùng 3 } 123lít
Số lít dầu ở thùng 1 lúc sau là: (123 - 4 ) : 7 . 2 = 34 (l)
Vậy số lít dầu ở thùng 1 lúc đầu là: 34 - 9 + 5 = 30 (l)
Số lít dầu ở thùng 2 lúc sau là: 34 + 4 = 38 (l)
Vậy số lít dầu ở thùng 2 lúc đầu là: 38 + 7 - 5 = 40 (l)
Vậy số lít dầu ở thùng 3 lúc đầu là: 123 - 30 - 40 = 53 (l)
ĐS:
Như vậy, lúc đầu số dầu ở thùng 1 nhiều hơn số dầu ở thùng 2 là 4 lít.
Sau khi chuyển 2 lít từ thùng 2 sang thùng 1 thì thùng 1 nhiều hơn thùng 2 la2 8 lít. Tỷ số giữ hai thùng là: 3/1.
Hiệu số phần bằng nhau là: 3-1 = 2.
Số dầu ở thùng 1 lúc này là: 8:2 x 3 = 12 (lít). Vậy số dầu ở thùng 1 lúc đầu là: 12-2 = 10 (lít)
Số dầu ở thùng 2 lúc đầu là: 10 - 4 = 6 (lít).
Đáp số: 10 lít và 6 lít
Như vậy, lúc đầu số dầu ở thùng 1 nhiều hơn số dầu ở thùng 2 là 4 lít.
Sau khi chuyển 2 lít từ thùng 2 sang thùng 1 thì thùng 1 nhiều hơn thùng 2 la2 8 lít. Tỷ số giữ hai thùng là: 3/1.
Hiệu số phần bằng nhau là: 3-1 = 2.
Số dầu ở thùng 1 lúc này là: 8:2 x 3 = 12 (lít). Vậy số dầu ở thùng 1 lúc đầu là: 12-2 = 10 (lít)
Số dầu ở thùng 2 lúc đầu là: 10 - 4 = 6 (lít).
Đáp số: 10 lít và 6 lít
Gọi $x_1, x_2, x_3, x_4$ lần lượt là số lít dầu trong các thùng thứ nhất, thứ hai, thứ ba và thứ tư. Theo đề bài, ta có hệ phương trình sau:
$\begin{cases} x_1 + x_2 + x_3 + x_4 = 154 \ x_1 = \frac{2}{7}(x_1 + x_2 + x_3 + x_4) \ x_2 = \frac{4}{3}(x_1 + x_2 + x_3 + x_4) \ \frac{3}{5}x_3 - 5 = \frac{1}{3}(x_4 + 5) \end{cases}$
Để giải hệ phương trình này, ta sẽ áp dụng phương pháp khử Gauss để tìm nghiệm của hệ phương trình.
Bước 1: Chuyển hệ phương trình về dạng ma trận mở rộng:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ \frac{4}{3} & -1 & -1 & 0 & 0 \ 0 & 0 & \frac{3}{5} & -\frac{1}{3} & -\frac{10}{3} \ 1 & 1 & 1 & 1 & 154 \end{array}\right)$
Bước 2: Biến đổi ma trận sao cho phần tử ở cột đầu tiên và hàng đầu tiên là 1, các phần tử còn lại trong cột đầu tiên là 0:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ 0 & \frac{27}{7} & \frac{1}{3} & 0 & 0 \ 0 & \frac{6}{7} & \frac{9}{5} & -\frac{1}{3} & -\frac{10}{3} \ 0 & \frac{9}{7} & 2 & 1 & 154 \end{array}\right)$
Bước 3: Biến đổi ma trận sao cho các phần tử trong hàng thứ hai và cột thứ hai là 0, các phần tử còn lại trong cột thứ hai là 0:
$\left(\begin{array}{cccc|c} 1 & 0 & -\frac{19}{27} & 0 & 0 \ 0 & 1 & \frac{7}{81} & 0 & 0 \ 0 & 0 & \frac{67}{27} & -\frac{1}{3} & -\frac{10}{3} \ 0 & 0 & \frac{170}{27} & 1 & 154
Thùng 1 có 154*2/7=44(lít)
Thùng2 có 44*3/4=33 lít
Gọi số lít dầu thùng 3 và thùng 4 lần lượt là a,b
Theo đề, ta có: a+b=77 và 2/5(a-5)=1/3(b+5)
=>a+b=77 và 2/5a-1/3b=5/3+2=11/3
=>a=40 và b=37
Gọi số thùng dầu ở mỗi thùng lần lượt là a, b, c (lít; a, b, c ∈ N*)
Vì số dầu ở thùng thứ nhất bằng \(\dfrac{2}{3}\) số dầu ở thùng thứ ba, số dầu ở thừng thứ hai bằng \(\dfrac{3}{4}\) số dầu ở thùng thứ nhất, thùng thứ ba nhiều hơn thùng thứ hai 45 lít dầu, nên:
\(a=\dfrac{2}{3}c;b=\dfrac{3}{4}a\) và \(c-b=45\)
\(\Rightarrow c=\dfrac{3}{2}a\)
\(\Rightarrow c-b=\dfrac{3}{2}a-\dfrac{3}{4}a=45\)
\(\Rightarrow\dfrac{3}{4}a=45\Leftrightarrow a=60\) (tmđk)
Khi đó: \(\left\{{}\begin{matrix}b=\dfrac{3}{4}.60=45\\c=\dfrac{3}{2}.60=90\end{matrix}\right.\) (tmđk)
Vậy...
Ta đặt : thùng dầu 1 có chứa x lít dầu
thùng dầu 2 có chứa y lít dầu
Sau khi đổ 5 lít dầu từ thùng một sang thùng hai thì lượng dầu thùng thứ hai gấp rưỡi thùng thứ nhất. Ta có pt :
2.(x-5)=y+5 và x+y = 80
<=> 2x-10=y+5
<=> 2x = y+5+10
=> x= y+152y+152
=> y+152+y=80y+152+y=80 => y = 14531453
=> x = y+152=1453+152=953y+152=1453+152=953
Vậy thùng 1 chứa 953953 lít dầu
thùng 2 chứa 14531453 lít dầu
Khi đổ 5l5l dầu từ thùng thứ nhất sang thùng thứ 22 thì tổng số dầu ở 22 thùng không thay đổi và vẫn bằng 80l80l
- Ta có sơ đồ lúc sau :
Thùng 1 : |---|---|
Thùng 2 : |---|---|---|
- Tổng số phần bằng nhau là :
3+2=53+2=5 (phần)
- Giá trị 11 phần là :
80:5=16(l)80:5=16(l)
- Lúc đầu thùng thứ nhất chứa :
16×2+5=37(l)16×2+5=37(l)
- Lúc đầu thùng thứ 22 chứa :
80−37=43(l)80-37=43(l)
Đáp số : Thùng 1:37l1:37l
Thùng 2:43l
thực hành rồi biết
Bài 1:
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian xe đi từ A đến B là:
\(\dfrac{x}{50}\left(h\right)\)
Thời gian xe đi từ B về A là:
\(\dfrac{x}{70}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{50}-\dfrac{x}{70}=4\)
\(\Leftrightarrow\dfrac{7x}{350}-\dfrac{5x}{350}=\dfrac{1400}{350}\)
Suy ra: 7x-5x=1400
\(\Leftrightarrow2x=1400\)
hay x=700(thỏa ĐK)
Vậy: AB=700km