Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:
\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)
Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)
Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)
Thay vào phương trình còn lại ta thu được:
\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)
Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)
\(\boxed{Nguyễn Thành Trương}\)
Bài 1: a liên hợp là ra mà nhỉ?
a) ĐK: \(x>-3\)
Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)
\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)
\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)
\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)
Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.
Do đó \(x=-\frac{11}{4}\)
P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@
\(\text{~tth~}\) |
a) ĐK:x\(\ge\dfrac{3}{4}\)
\(3\left(x^2-1\right)+4x=4x\sqrt{4x-3}\Leftrightarrow3x^2-3+4x=4x\sqrt{4x-3}\Leftrightarrow4x-3-4x\sqrt{4x-3}+4x^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x\right)^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x-x\right)\left(\sqrt{4x-3}-2x+x\right)^2=0\Leftrightarrow\left(\sqrt{4x-3}-3x\right)\left(\sqrt{4x-3}-x\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}-3x=0\\\sqrt{4x-3}-x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}=3x\left(x\ge0\right)\\\sqrt{4x-3}=x\left(x\ge0\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x-3=9x^2\\4x-3=x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)(*)
Vì 9x2-4x+3>0 nên 9x2-4x+3=0(loại)
(*)\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy S={1;3}
b)
\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\left(1\right)\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\left(2\right)\end{matrix}\right.\)(1)⇔ y3 - 3y2x + 3x2y + 7x3 = 1 - 6x + 12x2 <=> y3 - 3y2x + 3x2y - x3 = 1 - 6x + 12x2 - 8x3 <=> (y - x)3 = (1 - 2x)3 <=> y - x = 1 - 2x <=> y = 1 - x
Thế vào (2)\(\Leftrightarrow\sqrt[3]{4x+1-x+1}+\sqrt{3x+2\left(1-x\right)}=4\Leftrightarrow\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
Đặt a=\(\sqrt[3]{3x+2}\Leftrightarrow a^3=3x+2\)
b=\(\sqrt{x+2}\left(b\ge0\right)\Leftrightarrow b^2=x+2\Leftrightarrow3b^2=3x+6\)
Vậy 3b2-a3=4
Vậy ta sẽ có hệ phương trình \(\left\{{}\begin{matrix}3b^2-a^3=4\\a+b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3b^2-a^3=4\left(3\right)\\b=4-a\end{matrix}\right.\)
(3)\(\Leftrightarrow3\left(4-a\right)^2-a^3=4\Leftrightarrow a^3-3a^2+24a-44=0\Leftrightarrow\left(a-2\right)\left(a^2-a+22\right)=0\)(*)
Ta có a2-a+22>0
Vậy (*)\(\Leftrightarrow a-2=0\Leftrightarrow a=2\Leftrightarrow b=2\)
Vậy \(\left\{{}\begin{matrix}\sqrt[3]{3x+2}=2\\\sqrt{x+2}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x+2=8\\x+2=4\end{matrix}\right.\)\(\Leftrightarrow x=2\Leftrightarrow y=-1\)
Vậy (x;y)=(2;-1)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(\Leftrightarrow2x^3=x^3+y^3\)
\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)
Thay vào pt đầu:
\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)
a/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với
Theo Viet đảo, a và b là nghiệm của:
\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)
1/PT (1) cho ta nhân tử x - y - 1:)
\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)
ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)
PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)
Dễ thấy cái ngoặc to < 0
Do đó x= y + 1
Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)
ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)
PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)
\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)
Cái ngoặc to > 0 =>...
P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(
2/ĐK: \(x\ge-y;y\ge0\)
PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)
Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).
Do đó x = y \(\ge0\)
Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)
Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)
Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)
P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)