Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có A= \(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+...+\(\frac{3}{5.100!}\)=\(\frac{3}{5}\)(\(\frac{1}{2!}\)+\(\frac{1}{3!}\)+....+\(\frac{1}{100!}\))
đặt vế trong ngoặc là B. Đặt \(\frac{1}{2!}\)+\(\frac{2}{3!}\)+...+\(\frac{99}{100!}\)=C ta có C=\(\frac{2-1}{2!}\)+\(\frac{3-1}{3!}\)+....+\(\frac{100-1}{100!}\)
=\(\frac{2}{2!}\)-\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+...+\(\frac{1}{99!}\)-\(\frac{1}{100!}\)=1-\(\frac{1}{100!}\)<1
mà \(\frac{1}{2!}\)=\(\frac{1}{2!}\);\(\frac{1}{3!}\)<\(\frac{2}{3!}\);....;\(\frac{1}{100!}\)<\(\frac{99}{100!}\)\(\Rightarrow\)B<C<1\(\Rightarrow\)B.\(\frac{3}{5}\)<1.\(\frac{3}{5}\)=\(\frac{3}{5}\)=0.6\(\Rightarrow\)A<0.6
Cũng đơn giản mà em nhớ k cho chị nha !
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có :
\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)
\(\Rightarrow\)\(B>1\) \(\left(1\right)\)
Lại có :
\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)
\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(1< B< 2\) ( đpcm )
Vậy \(1< B< 2\)
Chúc bạn học tốt ~