Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau:
Do \(\cos^2x+\sin^2x=1,\left(\tan x\right)'=\frac{1}{\cos^2x},\left(\cot x\right)'=-\frac{1}{\sin^2x}\) nên ta có
\(\int\frac{dx}{\cos^2x.sin^2x}=\int\left(\frac{1}{\cos^2x}+\frac{1}{\sin^2x}\right)dx=\int d\left(\tan x\right)-\int d\left(\cot x\right)=\tan x-\cot x+c\)
\(\int e^x.\cos xdx\)
= \(\int\cos xd\left(e^x\right)\)
= ex . cos x - \(\int e^xd\left(\cos x\right)\)
= ex cos x + \(\int\sin x.e^xdx\)
= ex cos x + \(\int\sin xd\left(e^x\right)\)
= ex cos x + sin x . ex - \(\int e^xd\left(\sin x\right)\)
= ex ( cos x - sin x ) - \(\int e^x.\cos xdx\)
= \(\int e^x.\cos x=\dfrac{e^x\left(\cos x+\sin x\right)}{2}\)
Vậy a = b = \(\dfrac{1}{2}\)
Do \(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^8x\le sin^2x\\cos^8x\le cos^2x\end{matrix}\right.\)
\(\Rightarrow P=sin^8x+cos^8x\le sin^2x+cos^2x=1\)
\(P=sin^8x+cos^8x\ge\frac{1}{2}\left(sin^4x+cos^4x\right)^2\ge\frac{1}{2}\left(\frac{1}{2}\left(sin^2x+cos^2x\right)^2\right)^2=\frac{1}{8}\)
MN K BT?