K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2024

a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)

b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)

c)\(x^2+x+1>x^2\ge0\)

d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)

25 tháng 6 2017

Bài 1:

a, \(x^2-6x+10=x^2-3x-3x+9+1\)

\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy................... (đpcm)

b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)\)

\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)

\(=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)

Vậy............... (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5\)

\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\)ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x=1\)

Vậy........

b, Xem lại đề.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\)ta có:

\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy............

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 1 :

a) \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )

\(\rightarrowđpcm\)

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)

\(\rightarrowđpcm\)

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(P=\left(x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_P=4\) khi x = 1

c, \(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

20 tháng 9 2020

x2 + 1/4x = 0

<=> ( x + 1/8 )2 - 1/64 = 0

<=> ( x + 1/8 )= 1/64

<=> \(\orbr{\begin{cases}x+\frac{1}{8}=\frac{1}{8}\\x+\frac{1}{8}=-\frac{1}{8}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)

( x + 1/2 ) ( x - 1/2 ) > 0

<=> \(\orbr{\begin{cases}x_1+\frac{1}{2}>0\\x_2-\frac{1}{2}>0\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1+\frac{1}{2}< 0\\x_2-\frac{1}{2}< 0\end{cases}}\)

<=> \(\orbr{\begin{cases}x_1>-\frac{1}{2}\\x_2>\frac{1}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1< -\frac{1}{2}\\x_2< \frac{1}{2}\end{cases}}\)

<=> x > 1/2 hoặc x < - 1/2

\(\frac{x+3}{x-2}\le0\)

<=> \(\frac{x-2+5}{x-2}\le0\)

<=> 1 + \(\frac{5}{x-2}\le0\)

<=> \(\frac{5}{x-2}\le-1\)

\(\Leftrightarrow x-2\le-5\)

\(\Leftrightarrow x\le-3\)

10 tháng 7 2016

a) MIN =\(\frac{-9}{2}\)

b) max = 1

C)MAX =7

16 tháng 6 2017

cái j sao khó nhìn vậy

11 tháng 2 2022
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT