K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Khó vậy bạn

Mình mới học lớp 7

6 tháng 10 2017

a/ Ta chứng minh: \(B=\left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là số nguyên với mọi n

Với \(n=0\Rightarrow B=2\)

Với \(n=1\Rightarrow B=10\)

Giả sử nó đúng đến \(n=k\) hay

\(\hept{\begin{cases}\left(5+2\sqrt{6}\right)^{k-1}+\left(5-2\sqrt{6}\right)^{k-1}=a\\\left(5+2\sqrt{6}\right)^k+\left(5-2\sqrt{6}\right)^k=b\end{cases}}\) \(\left(a,b\in Z\right)\)

Ta chứng minh nó đúng đến \(n=k+1\)

Ta có: \(\left(5+2\sqrt{6}\right)^{k+1}+\left(5-2\sqrt{6}\right)^{k+1}\)

\(=\left(5+2\sqrt{6}\right)\left(b-\left(5-2\sqrt{6}\right)^k\right)+\left(5-2\sqrt{6}\right)\left(b-\left(5+2\sqrt{6}\right)^k\right)\)

\(=b\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)^{k-1}+b\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)^{k-1}\)

\(=10b-a\)

Vậy ta có điều phải chứng minh

6 tháng 10 2017

b/ Đặt \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n=x^n+y^n\)

Ta có: \(\hept{\begin{cases}x^2=10x-1\\y^2=10y-1\end{cases}}\)

\(\Rightarrow S_{n+2}=x^{n+2}+y^{n+2}=10\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)=10S_{n+1}-S_n\)

\(\Rightarrow S_{n+2}+S_n=10S_{n+1}⋮10\)

Tương tự cũng có: \(S_{n+4}+S_{n+2}=10S_{n+3}⋮10\) 

\(\Rightarrow S_{n+4}-S_n⋮10\)

Từ đây ta thấy được \(S_{n+4}\equiv S_n\left(mod10\right)\)

Mà \(S_0=2\)

Vậy với mọi n chia hết cho 4 thì số tận cùng của B là 2.

Quay lại bài toán ta thấy \(1004⋮4\) nên M sẽ có chữ số tận cùng là 2.

4 tháng 10 2019

Câu hỏi của le hoang minh khoi - Toán lớp 9 - Học toán với OnlineMath

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
15 tháng 1 2018

M = [(n+1)^2+4]^2-(n+1)2+2012

Đặt (n+1)^2 = a ( a >= 0 )

Khi đó : 

M = (a+4)^2-a+2012

    = a^2+8a+16-a+2012

    = a^2+7a+2028

    = a^2+a+6a+2028

Xét : a^2+a = (n^2+2n+1)^2-(n^2+2n+1) = (n^2+2n+1).(n^2+2n) = n.(n+1)^2.(n+2)

Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

=> a^2+a chia hết cho 6

Mà 6a và 2028 đều chia hết cho 6

=> M chia hết cho 6

Tk mk nha

16 tháng 8 2018

8 phút trước (09:39)

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!