Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có:
\(111...11222...22\left(100 cs 1 v\text{à} 2\right)=10^{100}.111...111\left(100 cs 1\right)+222...22\left(100 cs 2\right)\)
\(=10^{100}.\frac{10^{100}-1}{9}+2.\frac{10^{100}-1}{9}=\frac{10^{100}\left(10^{100}-1\right)+2\left(10^{100}-1\right)}{9}=\frac{\left(10^{100}+2\right)\left(10^{100}-1\right)}{9}=\frac{10^{100}+2}{3}.\frac{10^{100}-1}{3}\)
\(M\text{à} \frac{10^{100}+2}{3}\ne\frac{10^{100}-1}{3} \)
\(\Rightarrow111...11222..2\left(100 cs 1 v\text{à} 2\right) \) không phải là tích 2 số tự nhiên
2) Để dacb chia hết cho 4 thì cb chia hết cho 4
Ta có :
cb=10c+b=8c+2c+b
Mà 8c chia hết cho 4 nên
2c+b cũng phải chia hết cho 4(đpcm)
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
Bài 1:
a)Gọi 3 số đó là a;a+1;a+2
Ta có:
a+a+1+a+2=(a+a+a)+(1+2)
=3a+3=3(a+1) chia hết 3
Vậy ta có tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Gọi 4 số đó là a;a+1;a+2;a+3
Ta có:
a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)
=4a+6
Ta thấy: 4a chia hết 4, mà 6 không chia hết 4
Vậy ta có tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt