Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta1=\left(2b\right)^2-4ac=4b^2-4ac\)
\(\Delta2=\left(2c\right)^2-4ab=4c^2-4ab\)
\(\Delta3=\left(2a\right)^2-4bc=4a^2-4bc\)
\(\Rightarrow\Delta=\Delta1+\Delta2+\Delta3=4b^2-4ac+4c^2-4ab+4a^2-4bc\)
\(=2\left(2b^2-2ac+2c^2-2ab+2a^2-2bc\right)\)
\(=2\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\right)\)
\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Vậy với mọi a,b,c thì ít nhất một trong các pt sau có nghiệm
ax^2 + 2bx + c = 0 (1)
bx^2 + 2cx + a = 0 (2)
cx^2 + 2ax + b = 0 (3)
Xét:
Δ1 = b² - ac
Δ2 = c² - ab
Δ3 = a² - bc
ta có 2(Δ1+ Δ2 + Δ3)
= 2(b² - ac) + (c² - ab) + (a² - bc)
= (a² - 2ab + b² ) + (b² - 2bc + c²) + (c² - 2ac + a²)
= (a - b)² + (b - c)² + (a - c)² ≥ 0
=> Δ1+ Δ2 + Δ3 ≥ 0
=> trong 3Δ: Δ1;Δ2; Δ3 phải có ít nhất 1Δ ≥ 0
Vậy ít nhất 1phương trình có nghiệm => đpcm
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
Ta có ∆1' + ∆2' + ∆3' = b2 - ac + c2 - ab + a2 - bc = \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)\(\ge\)0
Vậy có ít nhất 1 phương trình có nghiệm