Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
viết dạng hệ cho dẽ nhìn
a^b = b^c (1)
b^c = c^d (2)
c^d = d^e (3)
d^e = e^a(4)
e^a=a^b(5)
*********dùng pp phải chứng
*******************
giả sử có 5 số tự nhiên thỏa mãn trên
không thay đổi ý nghia giả sử
a>=b>=c>=d>e>=1
*****hàm mũ lũy thừa cơ số 1 rất đặc biệt khử cái này trước*******
nếu e=1
=> a>=b>=c>=d>=2 (*)
từ (5) => a=1 hoặc b=0 => không thỏa mãn (*)=> e<>1
ok
giờ có
a>=b>=c>=d>e>=2
từ(3)
c^d = d^e (3)
c>=d=> d<=e mâu thuẫn d>e
các số a,b,c,d,e có thể hoán đổi vị trí cho nhau
=>ít nhất có một phương trình không thỏa mãn
=> dpcm
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
Cho a,b,c,d là các số tự nhiên khác 0 thỏa mãn a 2 + b2 = c2 +d2. Chứng minh rằng a+b+c+d là hợp số.
a2 + b2 = c2 + d2
\(\Rightarrow\)a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) \(⋮\)2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) \(⋮\)2
\(\Rightarrow\)a + b + c + d \(⋮\)2 nên cũng là hợp số
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
Bài 1 :
Ta có :
\(A=1+3+5+7+...+n\) ( n lẻ )
Số số hạng :
\(\frac{n-1}{2}+1=\frac{n-1+2}{2}==\frac{n+1}{2}\) ( số hạng )
Suy ra :
\(A=\frac{\left(n+1\right).\frac{n+1}{2}}{2}=\frac{\left(n+1\right)\left(n+1\right)}{2}:2=\frac{\left(n+1\right)^2}{2}.\frac{1}{2}=\frac{\left(n+1\right)^2}{2^2}=\left(\frac{n+1}{2}\right)^2\)
Vậy A là số chính phương
Chúc bạn học tốt ~
Giả sử 2 số trong 3 số không bằng nhau :
a < b (1)
Trong hai lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy :
Do : ab = bc mà a < b \( \implies\) c < b
Ta có : bc = ca mà c < b \( \implies\) c < a
Ta có : ca = ab mà c < a \( \implies\) a > b (2)
Từ (1) ; (2) \( \implies\) Mâu thuẫn
\( \implies\) a = b = c (đpcm)