K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Bạn xét 2 trường hợp.

Nếu x+y+z=0 thì suy ra x+y=-z;y+z=-x;z+x=-y

Nếu x+y+z khác 0 thì áp dụng tính chất dãy tỉ số bằng nhau

8 tháng 11 2017

mình muốn hỏi cách tính x+y+z=0 cơ

26 tháng 2 2017

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)

\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)

\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)

28 tháng 2 2019

dùng tính chất của dãy tỉ số bằng nhau

1 tháng 9 2019

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)

=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\) 

Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)

=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)

=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)

=> A = \(8+2020=2028\)

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

6 tháng 2 2017

TH1:x+y+z=0

\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}=\frac{-xyz}{8xyz}=\frac{-1}{8}\)

TH2: \(x+y+z\ne0\)

Ta có:

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)

\(\Rightarrow\left(\frac{2x+2y-z}{z}+3\right)=\left(\frac{2x-y+2z}{y}+3\right)=\left(\frac{-x+2y+2z}{x}+3\right)\)\(\Rightarrow\frac{2x+2y+z}{z}=\frac{2x+2y++2z}{y}=\frac{2x+2y+2z}{x}\)

\(\Rightarrow x=y=z\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=1\)

Vậy M=1 hoặc M=\(\frac{-1}{8}\)

6 tháng 2 2017

theo bài ra ta có:

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)

\(\Rightarrow\frac{2x+2y-z}{x}+3=\frac{2x-y+2z}{y}+3=\frac{2y+2z-x}{x}+3\)

\(\Rightarrow\frac{2x+2y+2z}{z}=\frac{2x+2z+2y}{y}=\frac{2y+2z+2x}{x}\)

vì x;y;z là các số hữu tỉ khác 0

=> x = y = z

vậy ta có:

\(M=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

vậy M = 1