K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

19 tháng 11 2016

1.

Xét tam giác BAC và tam giác FAE có:

BA = FA (gt)

BAC = FAE (2 góc đối đỉnh)

AC = AE (gt)

=> Tam giác BAC = Tam giác FAE (c.g.c)

=> BC = FE (2 cạnh tương ứng)

2.

Xét tam giác AMB và tam giác DMC có:

AM = DM (gt)

AMB = DMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác DMC (c.g.c)

=> ABM = DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // DC

Xét tam giác AMC và tam giác DMB có:

AM = DM (gt)

AMC = DMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của CB)

=> Tam giác AMC = Tam giác DMB (c.g.c)

=> AC = DB (2 cạnh tương ứng)

Xét tam giác ABC và tam giác DCB có:

AB = DC (tam giác AMB = tam giác DMC)

BC chung

AC = DB (chứng minh trên)

=> Tam giác ABC = Tam giác DCB (c.c.c)

11 tháng 12 2016

A B C M H K

a) Vì ΔABC có: AB=AC(gt)

=> ΔABC cân tại A

=> góc ABC= góc ACB

Xét ΔAMB và ΔAMC có:

AB=AC(gt)

góc ABM= góc ACM (cmt)

MB=MC(gt)

=> ΔAMB=ΔAMC (c.g.c)

=> góc AMB= góc AMC

b) Có góc AMB + góc AMC =180 ( cặp góc kề bù)

Mà góc AMB = góc AMC

=> góc AMB= góc AMC =90

=> AM vuông góc BC

c) Vì ΔAMB=ΔAMC(cmt)

=>góc MAB= góc MAC

Xét ΔAHM và ΔAKM có:

AH=AK(gt)

góc MAH = góc MAK (cmt)

AM: cạnh chung

=> ΔAHM =ΔAKM (c.g.c)

=> góc AMH = góc AMK

=> MA là tia pg của góc HMK

d) Vì: AB=AH+HB

AC=AK+KC

Mà: AB=AC(gt) ; AH=AK(gt)

=> HB=KC

Xét ΔBHM và ΔCKM có:

BH=CK(cmt)

góc HBM= góc KCM (cmt)

MB=MC(gt)

=> ΔBHM = ΔCKM (c.g.c)

 

 

a: Xét ΔANE và ΔCNB có

NA=NC

\(\widehat{ANE}=\widehat{CNB}\)

NE=NB

Do đó: ΔANE=ΔCNB

Suy ra: \(\widehat{AEN}=\widehat{CBN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

b: Xét ΔAMD và ΔBMC có

MA=MB

\(\widehat{AMD}=\widehat{BMC}\)

MD=MC

Do đó: ΔAMD=ΔBMC

7 tháng 10 2021

Giúp e cde với ạ

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng

27 tháng 11 2016

A B C E D M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

Chúc bạn học giỏi nguyễn minh trang!vui

27 tháng 11 2016

các cậu vẽ hình và trả lời đầy đủ giúp mình. Thnks

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM