K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

  đó là hình bình hành đó bạn ơi. 
- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1) 
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2) 
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một) 
Chúc bạn thành công...

tk nha bạn

thank you bạn

13 tháng 12 2016

a, Ta noi AC lai voi nhau .

Xet tam giac ABD co :

AH=HD a AE=EB

=> HE la dtb => HE=1/2BD va HE//DB (1)

Xet tam giac BDC co : 

DG=GC va BF=FC

=> GF la dtb => GF=1/2BD va GF//BD (2)

Tu (1) va (2) suy ra : HE//GF va HE=GF

Hay tứ giác EFGH la HBH

b, Nếu AC vuông góc với BD thì tứ giác EFGH là hình HCN vì :

Ta có : AC//EF va BD//HE

=> E=90

Hay hình bình hành EFGH là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)

c, Áp dụng định lý pi-ta-go là : 

AO2+OB2=AB2

x2+82=102

x2=102-82

x2=36

=>x=6

Dien h tam giac AOB la : 

\(\frac{1}{2}.6.8=24cm^2\)

Vay dien h tam giac AOB la 24cm2

Câu a bạn có thể kham khảo bài của bạn le anh tu (co 2 cach)

nho k nha

21 tháng 12 2018

giúp mình với sắp thi rồi

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và \(GH=\dfrac{AB}{2}\)

GH//AB

FE//AB

Do đó: GH//FE

Ta có: \(GH=\dfrac{AB}{2}\)

\(FE=\dfrac{AB}{2}\)

Do đó: GH=FE

Xét tứ giác EFGH có

GH=FE

GH//FE

Do đó: EFGH là hình bình hành

2: AB=CD
mà AB=8cm

nên CD=8cm

Xét ΔADC có

G,F lần lượt là trung điểm của AD,AC

=>GF là đường trung bình của ΔADC

=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)

GF//DC

DC\(\perp\)AB

Do đó: GF\(\perp\)AB

Ta có: GF\(\perp\)AB

AB//GH

Do đó: GH\(\perp\)GF

Xét hình bình hành GHEF có GH\(\perp\)GF

nên GHEF là hình chữ nhật

=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)

5 tháng 12 2023

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và FE=AB

2

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và GH=AB

2

GH//AB

FE//AB

Do đó: GH//FE

Ta có: GH=AB2

 

F

E

=

A

B

2

 

Do đó: GH=FE

 

Xét tứ giác EFGH có

 

GH=FE

 

GH//FE

 

Do đó: EFGH là hình bình hành

 

2: AB=CD

mà AB=8cm

 

nên CD=8cm

 

Xét ΔADC có

 

G,F lần lượt là trung điểm của AD,AC

 

=>GF là đường trung bình của ΔADC

 

=>GF//DC và 

G

F

=

D

C

2

=

4

c

m

 

GF//DC

 

DC

AB

 

Do đó: GF

AB

 

Ta có: GF

AB

 

AB//GH

 

Do đó: GH

GF

 

Xét hình bình hành GHEF có GH

GF

 

nên GHEF là hình chữ nhật

 

=>

S

G

H

E

F

=

G

H

G

F

=

A

B

2

C

D

2

=

4

4

=

16

(

c

m

2

)

5 tháng 12 2023

Nó bị lỗi r

 

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông